Sebastian Sittl, Nicolas Helfricht, Georg Papastavrou
{"title":"Contactless calibration of microchanneled AFM cantilevers for fluidic force microscopy","authors":"Sebastian Sittl, Nicolas Helfricht, Georg Papastavrou","doi":"10.1002/viw.20230063","DOIUrl":null,"url":null,"abstract":"Atomic force microscopy (AFM) is an analytical technique that is increasingly utilized to determine interaction forces on the colloidal and cellular level. Fluidic force microscopy, also called FluidFM, became a vital tool for biomedical applications. FluidFM combines AFM and nanofluidics by means of a microchanneled cantilever that bears an aperture instead of a tip at its end. Thereby, single colloids or cells can be aspirated and immobilized to the cantilever, for example, to determine adhesion forces. To allow for quantitative measurements, the so-called (inverse) optical lever sensitivity (OLS and InvOLS, respectively) must be determined, which is typically done in a separate set of measurements on a hard, non-deformable substrate. Here, we present a different approach that is entirely based on hydrodynamic principles and does make use of the internal microfluidic channel of a FluidFM-cantilever and an external pressure control. Thereby, a contact-free calibration of the (inverse) optical lever sensitivity (InvOLS) becomes possible in under a minute. A quantitative model based on the thrust equation, which is well-known in avionics, and finite element simulations, is provided to describe the deflection of the cantilever as a function of the externally applied pressure. A comparison between the classical and the here-presented hydrodynamic method demonstrates equal accuracy.","PeriodicalId":34127,"journal":{"name":"VIEW","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIEW","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/viw.20230063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic force microscopy (AFM) is an analytical technique that is increasingly utilized to determine interaction forces on the colloidal and cellular level. Fluidic force microscopy, also called FluidFM, became a vital tool for biomedical applications. FluidFM combines AFM and nanofluidics by means of a microchanneled cantilever that bears an aperture instead of a tip at its end. Thereby, single colloids or cells can be aspirated and immobilized to the cantilever, for example, to determine adhesion forces. To allow for quantitative measurements, the so-called (inverse) optical lever sensitivity (OLS and InvOLS, respectively) must be determined, which is typically done in a separate set of measurements on a hard, non-deformable substrate. Here, we present a different approach that is entirely based on hydrodynamic principles and does make use of the internal microfluidic channel of a FluidFM-cantilever and an external pressure control. Thereby, a contact-free calibration of the (inverse) optical lever sensitivity (InvOLS) becomes possible in under a minute. A quantitative model based on the thrust equation, which is well-known in avionics, and finite element simulations, is provided to describe the deflection of the cantilever as a function of the externally applied pressure. A comparison between the classical and the here-presented hydrodynamic method demonstrates equal accuracy.
期刊介绍:
View publishes scientific articles studying novel crucial contributions in the areas of Biomaterials and General Chemistry. View features original academic papers which go through peer review by experts in the given subject area.View encourages submissions from the research community where the priority will be on the originality and the practical impact of the reported research.