{"title":"Experimental Investigation on the Properties of Sustainable Pervious Concrete with Different Aggregate Gradation","authors":"Junyu Zhang, Haoran Sun, Xiaotian Shui, Wenxuan Chen","doi":"10.1186/s40069-023-00625-0","DOIUrl":null,"url":null,"abstract":"<p>Pervious concrete (PC) as a green infrastructure material has been increasingly used due to its positive environmental impacts, such as controlling storm water runoff, removing water pollutants and reducing heat island effect. The aggregate gradation is a critical factor influencing the physical properties of PC. Therefore, this paper represents an attempt to determine the effects of aggregate gradation on the various physical properties of PC, and then to explore relationships between them. To this end, three aggregate gradations 4.75–9.5 mm, 9.5–19 mm and 19–31.5 mm were recombined with various proportions (20–80%) to obtain five different gradations named as A, B, C, D and E. PC mixtures were prepared with these five aggregate gradations. Then, physical and mechanical properties of PC including porosity, permeability, compressive strength and water stability were investigated, according to the available specification. The results suggested that it was feasible to use waste concrete for permeable pavement, because all the specimens provided required specification requirements. Different linear relationships were also found between the maximum aggregate size and porosity, permeability coefficient, compressive strength and its loss rate. That is, porosity and permeability increased with the proportion of larger size aggregate increased, however, compressive strength reduced. Thus the compressive strength had an inverse correlation with the porosity and water permeability. Among five different aggregate gradations, group C (20% of 4.75–9.5 mm aggregate, 50% of 9.5–19 mm aggregate and 30% of 19–31.5 mm aggregate) can be seen as the optimum gradation and is suitable for base layer materials of permeable pavements.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"108 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00625-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pervious concrete (PC) as a green infrastructure material has been increasingly used due to its positive environmental impacts, such as controlling storm water runoff, removing water pollutants and reducing heat island effect. The aggregate gradation is a critical factor influencing the physical properties of PC. Therefore, this paper represents an attempt to determine the effects of aggregate gradation on the various physical properties of PC, and then to explore relationships between them. To this end, three aggregate gradations 4.75–9.5 mm, 9.5–19 mm and 19–31.5 mm were recombined with various proportions (20–80%) to obtain five different gradations named as A, B, C, D and E. PC mixtures were prepared with these five aggregate gradations. Then, physical and mechanical properties of PC including porosity, permeability, compressive strength and water stability were investigated, according to the available specification. The results suggested that it was feasible to use waste concrete for permeable pavement, because all the specimens provided required specification requirements. Different linear relationships were also found between the maximum aggregate size and porosity, permeability coefficient, compressive strength and its loss rate. That is, porosity and permeability increased with the proportion of larger size aggregate increased, however, compressive strength reduced. Thus the compressive strength had an inverse correlation with the porosity and water permeability. Among five different aggregate gradations, group C (20% of 4.75–9.5 mm aggregate, 50% of 9.5–19 mm aggregate and 30% of 19–31.5 mm aggregate) can be seen as the optimum gradation and is suitable for base layer materials of permeable pavements.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.