Enhancing the Flexural Capacity of Deteriorated Low-Strength Prestressed Concrete Beam Using Near-Surface Mounted Post-Tensioned Carbon Fiber-Reinforced Polymer Bar
Sanghyeon Cho, Wonseok Chung, Woo-tai Jung, Jong-sup Park, Heeyoung Lee
{"title":"Enhancing the Flexural Capacity of Deteriorated Low-Strength Prestressed Concrete Beam Using Near-Surface Mounted Post-Tensioned Carbon Fiber-Reinforced Polymer Bar","authors":"Sanghyeon Cho, Wonseok Chung, Woo-tai Jung, Jong-sup Park, Heeyoung Lee","doi":"10.1186/s40069-024-00695-8","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to address the critical issue of age deterioration in prestressed concrete (PSC) structures by investigating the strengthening of aged PSC structures using a near-surface mounted (NSM) post-tensioned carbon fiber-reinforced polymer (CFRP). A total of nine PSC beams, each with a length of 6.5 m, were fabricated for a four-point bending test. Various experimental parameters were taken into account, including the strengthening method, compressive strength of concrete in the PSC beam, and the prestressing force of the PSC beam. The results indicated that the NSM post-tensioned CFRP strengthening system proved more efficient when compared to the NSM non-post-tensioned CFRP strengthening system. The flexural capacity of the NSM post-tensioned CFRP strengthening system, under the deteriorated low-strength PSC beam, increased by up to 30.9% compared to the PSC reference beam. Additionally, the experimental results were compared to a finite-element analysis, and a parametric study was conducted to examine the material properties of the PSC beam. Consequently, the NSM post-tensioned CFRP strengthening system is expected to be an effective solution for addressing the issue of deteriorated low-strength PSC structures.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-024-00695-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to address the critical issue of age deterioration in prestressed concrete (PSC) structures by investigating the strengthening of aged PSC structures using a near-surface mounted (NSM) post-tensioned carbon fiber-reinforced polymer (CFRP). A total of nine PSC beams, each with a length of 6.5 m, were fabricated for a four-point bending test. Various experimental parameters were taken into account, including the strengthening method, compressive strength of concrete in the PSC beam, and the prestressing force of the PSC beam. The results indicated that the NSM post-tensioned CFRP strengthening system proved more efficient when compared to the NSM non-post-tensioned CFRP strengthening system. The flexural capacity of the NSM post-tensioned CFRP strengthening system, under the deteriorated low-strength PSC beam, increased by up to 30.9% compared to the PSC reference beam. Additionally, the experimental results were compared to a finite-element analysis, and a parametric study was conducted to examine the material properties of the PSC beam. Consequently, the NSM post-tensioned CFRP strengthening system is expected to be an effective solution for addressing the issue of deteriorated low-strength PSC structures.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.