Resampling techniques for a class of smooth, possibly data-adaptive empirical copulas

Pub Date : 2023-12-07 DOI:10.1016/j.jspi.2023.106132
Ivan Kojadinovic , Bingqing Yi
{"title":"Resampling techniques for a class of smooth, possibly data-adaptive empirical copulas","authors":"Ivan Kojadinovic ,&nbsp;Bingqing Yi","doi":"10.1016/j.jspi.2023.106132","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula<span> using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap<span> and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.</span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一类平滑、可能具有数据适应性的经验共存系数的重采样技术
我们利用最近提出的一类包含经验伯恩斯坦协方差(以及经验贝塔协方差)的平滑、可能具有数据适应性的非参数估计器,研究了在对基础未知协方差进行推断时,两种重采样技术的有效性。根据 Kiriliouk 等人(2021 年)的研究,第一种重采样技术基于从平滑估计器中抽取样本,只能用于独立观测的情况。第二种技术是所谓的序列依赖乘数自举法的平滑扩展,因此可用于时间序列设置,也可用于变化点分析。所研究的两种重采样方案分别应用于置信区间构建和离线检测多变量时间序列的横截面依赖性变化。蒙特卡洛实验证实了这种平滑推断程序相对于非平滑推断程序可能具有的优势。这项工作的一个副产品是研究了两类共轭一阶偏导数平滑估计器的弱一致性和有限样本性能,这些估计器可应用于均值回归和量化回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1