Deterministic relation between thermal-phonon dressings and a non-Hermitian multi-Fano interferences router in ion-doped microcrystals

Chip Pub Date : 2023-11-29 DOI:10.1016/j.chip.2023.100077
Huanrong Fan , Faizan Raza , Anas Mujahid , Peng Li , Yafen Wang , Haitian Tang , Muhammad Usman , Bo Li , Changbiao Li , Yanpeng Zhang
{"title":"Deterministic relation between thermal-phonon dressings and a non-Hermitian multi-Fano interferences router in ion-doped microcrystals","authors":"Huanrong Fan ,&nbsp;Faizan Raza ,&nbsp;Anas Mujahid ,&nbsp;Peng Li ,&nbsp;Yafen Wang ,&nbsp;Haitian Tang ,&nbsp;Muhammad Usman ,&nbsp;Bo Li ,&nbsp;Changbiao Li ,&nbsp;Yanpeng Zhang","doi":"10.1016/j.chip.2023.100077","DOIUrl":null,"url":null,"abstract":"<div><p>The multi-Fano interference, which is obtained through the simultaneous acquisition of bright and dark states in different phase transitions of Eu<sup>3+</sup> : BiPO<sub>4</sub> (7 : 1, 6 : 1, 1 : 1, and 0.5 : 1) and Eu<sup>3+</sup> : NaYF<sub>4</sub> (1 : 1/4) crystals, were reported in this work. Multidressed spontaneous four-wave mixing and multidressed fluorescence (multiorder) were adopted to optimize the strong photon–phonon nested dressing effect, which results in more obvious multi-Fano interference. Firstly, the multi-Fano is produced through interference in continuous and multibound states. Secondly, five multi-Fano dips are originated from the nested five dressings (one photon and four phonons) under symmetrical splitting of <sup>7</sup>F<sub>1</sub> energy level. It is found that the pure H-phase (0.5 : 1) sample exhibits the strongest photon–phonon dressed effect (five Fano dips). Further, high-order non-Hermitian exceptional points in multi-Fano interference were investigated by adjusting the ratio of Rabi frequency to dephase rate through nested photon and phonon dressing. The experimental results are validated by theoretical simulations, which may be applied to designing optoelectronic devices such as non-Hermitian multi-Fano interferences (multichannel) router.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 1","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000400/pdfft?md5=b2c658c77e79f727b005a7f997cd812c&pid=1-s2.0-S2709472323000400-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-Fano interference, which is obtained through the simultaneous acquisition of bright and dark states in different phase transitions of Eu3+ : BiPO4 (7 : 1, 6 : 1, 1 : 1, and 0.5 : 1) and Eu3+ : NaYF4 (1 : 1/4) crystals, were reported in this work. Multidressed spontaneous four-wave mixing and multidressed fluorescence (multiorder) were adopted to optimize the strong photon–phonon nested dressing effect, which results in more obvious multi-Fano interference. Firstly, the multi-Fano is produced through interference in continuous and multibound states. Secondly, five multi-Fano dips are originated from the nested five dressings (one photon and four phonons) under symmetrical splitting of 7F1 energy level. It is found that the pure H-phase (0.5 : 1) sample exhibits the strongest photon–phonon dressed effect (five Fano dips). Further, high-order non-Hermitian exceptional points in multi-Fano interference were investigated by adjusting the ratio of Rabi frequency to dephase rate through nested photon and phonon dressing. The experimental results are validated by theoretical simulations, which may be applied to designing optoelectronic devices such as non-Hermitian multi-Fano interferences (multichannel) router.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子掺杂微晶中热-声子敷料与非赫米蒂多法诺干涉路由器之间的确定性关系
我们报告了在 Eu3+: BiPO4(7:1、6:1、1:1 和 0.5:1)和 Eu3+:NaYF4 (1:1/4) 晶体。我们采用多掺杂自发四波混合和多掺杂荧光(多阶)优化强光子-声子嵌套掺杂效应,从而产生更明显的多法诺干涉。首先,多法诺是通过连续态和多束缚态的干涉产生的。其次,在 7F1 能级对称分裂的情况下,五个多重法诺凹陷源于嵌套的五个敷料(一个光子和四个声子)。我们发现,纯 H 相(0.5:1)样品表现出最强的光子-声子修饰效应(五个法诺凹陷)。此外,我们还通过嵌套光子和声子敷料调整拉比频率与去相速率的比率,研究了多法诺干涉中的高阶非赫米提例外点。我们的实验结果得到了理论模拟的验证,可用于设计非ermitian 多法诺干涉(多通道)路由器等光电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1