Change point detection in high dimensional data with U-statistics

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Test Pub Date : 2023-12-07 DOI:10.1007/s11749-023-00900-y
B. Cooper Boniece, Lajos Horváth, Peter M. Jacobs
{"title":"Change point detection in high dimensional data with U-statistics","authors":"B. Cooper Boniece, Lajos Horváth, Peter M. Jacobs","doi":"10.1007/s11749-023-00900-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of detecting distributional changes in a sequence of high dimensional data. Our approach combines two separate statistics stemming from <span>\\(L_p\\)</span> norms whose behavior is similar under <span>\\(H_0\\)</span> but potentially different under <span>\\(H_A\\)</span>, leading to a testing procedure that that is flexible against a variety of alternatives. We establish the asymptotic distribution of our proposed test statistics separately in cases of weakly dependent and strongly dependent coordinates as <span>\\(\\min \\{N,d\\}\\rightarrow \\infty \\)</span>, where <i>N</i> denotes sample size and <i>d</i> is the dimension, and establish consistency of testing and estimation procedures in high dimensions under one-change alternative settings. Computational studies in single and multiple change point scenarios demonstrate our method can outperform other nonparametric approaches in the literature for certain alternatives in high dimensions. We illustrate our approach through an application to Twitter data concerning the mentions of U.S. governors.\n</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"3 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-023-00900-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of detecting distributional changes in a sequence of high dimensional data. Our approach combines two separate statistics stemming from \(L_p\) norms whose behavior is similar under \(H_0\) but potentially different under \(H_A\), leading to a testing procedure that that is flexible against a variety of alternatives. We establish the asymptotic distribution of our proposed test statistics separately in cases of weakly dependent and strongly dependent coordinates as \(\min \{N,d\}\rightarrow \infty \), where N denotes sample size and d is the dimension, and establish consistency of testing and estimation procedures in high dimensions under one-change alternative settings. Computational studies in single and multiple change point scenarios demonstrate our method can outperform other nonparametric approaches in the literature for certain alternatives in high dimensions. We illustrate our approach through an application to Twitter data concerning the mentions of U.S. governors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 U 统计法检测高维数据中的变化点
我们考虑的问题是检测高维数据序列中的分布变化。我们的方法结合了源于 \(L_p\) 准则的两个独立统计量,它们在 \(H_0\) 条件下的行为相似,但在\(H_A\) 条件下可能不同,这就导致了一种测试程序,它可以灵活地应对各种选择。我们分别在弱依赖坐标和强依赖坐标的情况下建立了我们提出的测试统计量的渐近分布,即 \(\min \{N,d\}\rightarrow \infty \),其中 N 表示样本大小,d 是维数,并建立了在一变替代设置下高维测试和估计程序的一致性。单变化点和多变化点情况下的计算研究表明,对于高维度下的某些替代方案,我们的方法优于文献中的其他非参数方法。我们通过应用有关美国州长提及情况的 Twitter 数据来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
期刊最新文献
Jackknife empirical likelihood for the correlation coefficient with additive distortion measurement errors Nonparametric conditional survival function estimation and plug-in bandwidth selection with multiple covariates Higher-order spatial autoregressive varying coefficient model: estimation and specification test Composite quantile estimation in partially functional linear regression model with randomly censored responses Bayesian inference and cure rate modeling for event history data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1