Higher-order spatial autoregressive varying coefficient model: estimation and specification test

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Test Pub Date : 2024-08-26 DOI:10.1007/s11749-024-00944-8
Tizheng Li, Yuping Wang
{"title":"Higher-order spatial autoregressive varying coefficient model: estimation and specification test","authors":"Tizheng Li, Yuping Wang","doi":"10.1007/s11749-024-00944-8","DOIUrl":null,"url":null,"abstract":"<p>Conventional higher-order spatial autoregressive models assume that regression coefficients are constant over space, which is overly restrictive and unrealistic in applications. In this paper, we introduce higher-order spatial autoregressive varying coefficient model where regression coefficients are allowed to smoothly change over space, which enables us to simultaneously explore different types of spatial dependence and spatial heterogeneity of regression relationship. We propose a semi-parametric generalized method of moments estimation method for the proposed model and derive asymptotic properties of resulting estimators. Moreover, we propose a testing method to detect spatial heterogeneity of the regression relationship. Simulation studies show that the proposed estimation and testing methods perform quite well in finite samples. The Boston house price data are finally analyzed to demonstrate the proposed model and its estimation and testing methods.</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"19 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00944-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional higher-order spatial autoregressive models assume that regression coefficients are constant over space, which is overly restrictive and unrealistic in applications. In this paper, we introduce higher-order spatial autoregressive varying coefficient model where regression coefficients are allowed to smoothly change over space, which enables us to simultaneously explore different types of spatial dependence and spatial heterogeneity of regression relationship. We propose a semi-parametric generalized method of moments estimation method for the proposed model and derive asymptotic properties of resulting estimators. Moreover, we propose a testing method to detect spatial heterogeneity of the regression relationship. Simulation studies show that the proposed estimation and testing methods perform quite well in finite samples. The Boston house price data are finally analyzed to demonstrate the proposed model and its estimation and testing methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高阶空间自回归变化系数模型:估计和规格检验
传统的高阶空间自回归模型假设回归系数在空间上是恒定的,这种假设限制过多,在应用中不现实。在本文中,我们引入了高阶空间自回归变化系数模型,允许回归系数随空间平滑变化,这使我们能够同时探索不同类型的空间依赖性和回归关系的空间异质性。我们为提出的模型提出了一种半参数广义矩估计方法,并推导出了估计结果的渐近特性。此外,我们还提出了一种检测回归关系空间异质性的方法。模拟研究表明,所提出的估计和检验方法在有限样本中表现相当出色。最后,我们对波士顿的房价数据进行了分析,以证明所提出的模型及其估计和检验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
期刊最新文献
Jackknife empirical likelihood for the correlation coefficient with additive distortion measurement errors Nonparametric conditional survival function estimation and plug-in bandwidth selection with multiple covariates Higher-order spatial autoregressive varying coefficient model: estimation and specification test Composite quantile estimation in partially functional linear regression model with randomly censored responses Bayesian inference and cure rate modeling for event history data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1