Chengxin Wu, Nengxiang Ling, Philippe Vieu, Guoliang Fan
{"title":"Composite quantile estimation in partially functional linear regression model with randomly censored responses","authors":"Chengxin Wu, Nengxiang Ling, Philippe Vieu, Guoliang Fan","doi":"10.1007/s11749-024-00946-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on the studying of composite quantile estimation for the partially functional linear regression model with randomly censored responses. Concretely, we adopt the approach of inverse probability weighting to estimate the weights by using the survival distribution function of the censoring variables with the methods of Kaplan–Meier and Breslow as well as local Kaplan-Meier respectively. Then, we construct the weighted composite quantile estimators for the slope function and the scalar parameters of the model. Furthermore, the large sample properties, such as the convergence rates of the estimators for the slope function and scalar parameters as well as the asymptotic distribution of the estimators for the scalar parameters are obtained under some mild conditions. In addition, we propose a computationally simple resampling technique to approximate the distribution of the parametric estimators of the model, and establish the interval estimations for the scalar parameters. Finally, the finite sample performances of the model and the estimation method are illustrated by some simulation studies and a real data analysis, which shows that both the model and the estimation methods are effective.\n</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"62 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00946-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the studying of composite quantile estimation for the partially functional linear regression model with randomly censored responses. Concretely, we adopt the approach of inverse probability weighting to estimate the weights by using the survival distribution function of the censoring variables with the methods of Kaplan–Meier and Breslow as well as local Kaplan-Meier respectively. Then, we construct the weighted composite quantile estimators for the slope function and the scalar parameters of the model. Furthermore, the large sample properties, such as the convergence rates of the estimators for the slope function and scalar parameters as well as the asymptotic distribution of the estimators for the scalar parameters are obtained under some mild conditions. In addition, we propose a computationally simple resampling technique to approximate the distribution of the parametric estimators of the model, and establish the interval estimations for the scalar parameters. Finally, the finite sample performances of the model and the estimation method are illustrated by some simulation studies and a real data analysis, which shows that both the model and the estimation methods are effective.
期刊介绍:
TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal.
The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome.
One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.