The target region focused imaging method for scanning ion conductance microscopy

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2023-12-09 DOI:10.1016/j.ultramic.2023.113910
Shengbo Gu , Jian Zhuang , Tianying Wang , Shiting Hu , Weilun Song , Xiaobo Liao
{"title":"The target region focused imaging method for scanning ion conductance microscopy","authors":"Shengbo Gu ,&nbsp;Jian Zhuang ,&nbsp;Tianying Wang ,&nbsp;Shiting Hu ,&nbsp;Weilun Song ,&nbsp;Xiaobo Liao","doi":"10.1016/j.ultramic.2023.113910","DOIUrl":null,"url":null,"abstract":"<div><p>Scanning ion conductance microscopy (SICM) has developed rapidly and has wide applications in biomedicine, single-cell science and other fields. SICM scanning speed is limited by the conventional raster-type scanning method, which spends most of time on imaging the substrate and does not focus enough on the target area. In order to solve this problem, a target region focused (TRF) method is proposed, which can effectively avoid the scanning of unnecessary substrate areas and enables SICM to image the target area only to achieve high-speed and effective local scanning. TRF method and conventional hopping mode scanning method are compared in the experiments using breast cancer cells and rat basophilic leukemia cells as experimental materials. It was demonstrated that our method can reduce the scanning time for a single sample image significantly without losing scanning information or compromising the quality of imaging. The TRF method developed in this paper can provide an efficient and fast scanning strategy for improving the imaging performance of SICM systems, which can be applied to the dynamic features of cell samples in the fields of biology and pharmacology analysis.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"257 ","pages":"Article 113910"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399123002279","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Scanning ion conductance microscopy (SICM) has developed rapidly and has wide applications in biomedicine, single-cell science and other fields. SICM scanning speed is limited by the conventional raster-type scanning method, which spends most of time on imaging the substrate and does not focus enough on the target area. In order to solve this problem, a target region focused (TRF) method is proposed, which can effectively avoid the scanning of unnecessary substrate areas and enables SICM to image the target area only to achieve high-speed and effective local scanning. TRF method and conventional hopping mode scanning method are compared in the experiments using breast cancer cells and rat basophilic leukemia cells as experimental materials. It was demonstrated that our method can reduce the scanning time for a single sample image significantly without losing scanning information or compromising the quality of imaging. The TRF method developed in this paper can provide an efficient and fast scanning strategy for improving the imaging performance of SICM systems, which can be applied to the dynamic features of cell samples in the fields of biology and pharmacology analysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描离子电导显微镜的靶区聚焦成像方法
扫描离子电导显微镜(SICM)发展迅速,在生物医学、单细胞科学等领域有着广泛的应用。传统的光栅式扫描方法将大部分时间花在基底成像上,对目标区域的聚焦不够,从而限制了扫描离子电导显微镜的扫描速度。为了解决这个问题,我们提出了一种目标区域聚焦(TRF)方法,它能有效避免扫描不必要的基底区域,使 SICM 只对目标区域成像,从而实现高速、有效的局部扫描。以乳腺癌细胞和大鼠嗜碱性白血病细胞为实验材料,比较了 TRF 方法和传统跳模扫描方法。结果表明,我们的方法可以在不丢失扫描信息和不影响成像质量的情况下大大缩短单个样本图像的扫描时间。本文开发的 TRF 方法可为提高 SICM 系统的成像性能提供一种高效、快速的扫描策略,可应用于生物学和药理学分析领域细胞样本的动态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Corrigendum to "Structure-preserving Gaussian denoising of FIB-SEM volumes" [Ultramicroscopy Volume 246, 113674]. Toward quantitative thermoelectric characterization of (nano)materials by in-situ transmission electron microscopy New experimental methodology for determining the second crossover energy in insulators under stationary e-irradiation in a SEM Beyond the random phase approximation (RPA): First principles calculation of the valence EELS spectrum for KBr including local field, quasiparticle, excitonic and spin orbit coupling effects A high-performance reconstruction method for partially coherent ptychography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1