Adaptive feature extraction method for capsule endoscopy images

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-12-11 DOI:10.1186/s42492-023-00151-6
Dingchang Wu, Yinghui Wang, Haomiao Ma, Lingyu Ai, Jinlong Yang, Shaojie Zhang, Wei Li
{"title":"Adaptive feature extraction method for capsule endoscopy images","authors":"Dingchang Wu, Yinghui Wang, Haomiao Ma, Lingyu Ai, Jinlong Yang, Shaojie Zhang, Wei Li","doi":"10.1186/s42492-023-00151-6","DOIUrl":null,"url":null,"abstract":"The traditional feature-extraction method of oriented FAST and rotated BRIEF (ORB) detects image features based on a fixed threshold; however, ORB descriptors do not distinguish features well in capsule endoscopy images. Therefore, a new feature detector that uses a new method for setting thresholds, called the adaptive threshold FAST and FREAK in capsule endoscopy images (AFFCEI), is proposed. This method, first constructs an image pyramid and then calculates the thresholds of pixels based on the gray value contrast of all pixels in the local neighborhood of the image, to achieve adaptive image feature extraction in each layer of the pyramid. Subsequently, the features are expressed by the FREAK descriptor, which can enhance the discrimination of the features extracted from the stomach image. Finally, a refined matching is obtained by applying the grid-based motion statistics algorithm to the result of Hamming distance, whereby mismatches are rejected using the RANSAC algorithm. Compared with the ASIFT method, which previously had the best performance, the average running time of AFFCEI was 4/5 that of ASIFT, and the average matching score improved by 5% when tracking features in a moving capsule endoscope.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-023-00151-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional feature-extraction method of oriented FAST and rotated BRIEF (ORB) detects image features based on a fixed threshold; however, ORB descriptors do not distinguish features well in capsule endoscopy images. Therefore, a new feature detector that uses a new method for setting thresholds, called the adaptive threshold FAST and FREAK in capsule endoscopy images (AFFCEI), is proposed. This method, first constructs an image pyramid and then calculates the thresholds of pixels based on the gray value contrast of all pixels in the local neighborhood of the image, to achieve adaptive image feature extraction in each layer of the pyramid. Subsequently, the features are expressed by the FREAK descriptor, which can enhance the discrimination of the features extracted from the stomach image. Finally, a refined matching is obtained by applying the grid-based motion statistics algorithm to the result of Hamming distance, whereby mismatches are rejected using the RANSAC algorithm. Compared with the ASIFT method, which previously had the best performance, the average running time of AFFCEI was 4/5 that of ASIFT, and the average matching score improved by 5% when tracking features in a moving capsule endoscope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶囊内窥镜图像的自适应特征提取方法
传统的定向 FAST 和旋转 BRIEF(ORB)特征提取方法根据固定阈值检测图像特征;然而,ORB 描述符不能很好地区分胶囊内窥镜图像中的特征。因此,我们提出了一种使用新方法设置阈值的新特征检测器,称为胶囊内窥镜图像中的自适应阈值 FAST 和 FREAK(AFFCEI)。该方法首先构建一个图像金字塔,然后根据图像局部邻域内所有像素的灰度对比度计算像素的阈值,实现金字塔每一层的自适应图像特征提取。随后,通过 FREAK 描述符来表达特征,从而提高从胃部图像中提取的特征的辨别能力。最后,将基于网格的运动统计算法应用于汉明距离结果,从而获得精细匹配,并使用 RANSAC 算法剔除不匹配。与之前性能最好的 ASIFT 方法相比,AFFCEI 的平均运行时间是 ASIFT 的 4/5,在跟踪移动胶囊内窥镜中的特征时,平均匹配得分提高了 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1