Tensor eigenvectors for projection pursuit

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Test Pub Date : 2023-12-11 DOI:10.1007/s11749-023-00902-w
Nicola Loperfido
{"title":"Tensor eigenvectors for projection pursuit","authors":"Nicola Loperfido","doi":"10.1007/s11749-023-00902-w","DOIUrl":null,"url":null,"abstract":"<p>Tensor eigenvectors naturally generalize matrix eigenvectors to multi-way arrays: eigenvectors of symmetric tensors of order <i>k</i> and dimension <i>p</i> are stationary points of polynomials of degree <i>k</i> in <i>p</i> variables on the unit sphere. Dominant eigenvectors of symmetric tensors maximize polynomials in several variables on the unit sphere, while base eigenvectors are roots of polynomials in several variables. In this paper, we focus on skewness-based projection pursuit and on third-order tensor eigenvectors, which provide the simplest, yet relevant connections between tensor eigenvectors and projection pursuit. Skewness-based projection pursuit finds interesting data projections using the dominant eigenvector of the sample third standardized cumulant to maximize skewness. Skewness-based projection pursuit also uses base eigenvectors of the sample third cumulant to remove skewness and facilitate the search for interesting data features other than skewness. Our contribution to the literature on tensor eigenvectors and on projection pursuit is twofold. Firstly, we show how skewness-based projection pursuit might be helpful in sequential cluster detection. Secondly, we show some asymptotic results regarding both dominant and base tensor eigenvectors of sample third cumulants. The practical relevance of the theoretical results is assessed with six well-known data sets.</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"79 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-023-00902-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor eigenvectors naturally generalize matrix eigenvectors to multi-way arrays: eigenvectors of symmetric tensors of order k and dimension p are stationary points of polynomials of degree k in p variables on the unit sphere. Dominant eigenvectors of symmetric tensors maximize polynomials in several variables on the unit sphere, while base eigenvectors are roots of polynomials in several variables. In this paper, we focus on skewness-based projection pursuit and on third-order tensor eigenvectors, which provide the simplest, yet relevant connections between tensor eigenvectors and projection pursuit. Skewness-based projection pursuit finds interesting data projections using the dominant eigenvector of the sample third standardized cumulant to maximize skewness. Skewness-based projection pursuit also uses base eigenvectors of the sample third cumulant to remove skewness and facilitate the search for interesting data features other than skewness. Our contribution to the literature on tensor eigenvectors and on projection pursuit is twofold. Firstly, we show how skewness-based projection pursuit might be helpful in sequential cluster detection. Secondly, we show some asymptotic results regarding both dominant and base tensor eigenvectors of sample third cumulants. The practical relevance of the theoretical results is assessed with six well-known data sets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
投影追寻的张量特征向量
张量特征向量自然地将矩阵特征向量概括为多向阵列:阶数为 k、维数为 p 的对称张量的特征向量是单位球上 p 个变量中 k 阶多项式的静止点。对称张量的主特征向量最大化了单位球上多个变量的多项式,而基特征向量则是多个变量的多项式的根。本文重点研究基于偏度的投影追寻和三阶张量特征向量,它们提供了张量特征向量和投影追寻之间最简单但又相关的联系。基于偏度的投影追寻使用样本三阶标准化累积的主导特征向量来最大化偏度,从而找到有趣的数据投影。基于偏度的投影追寻还使用样本第三累计量的基特征向量来消除偏度,便于寻找偏度以外的有趣数据特征。我们对有关张量特征向量和投影追寻的文献有两方面的贡献。首先,我们展示了基于偏度的投影追寻如何有助于顺序聚类检测。其次,我们展示了关于样本第三积的显性和基张量特征向量的一些渐近结果。我们用六个著名的数据集评估了这些理论结果的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
期刊最新文献
Jackknife empirical likelihood for the correlation coefficient with additive distortion measurement errors Nonparametric conditional survival function estimation and plug-in bandwidth selection with multiple covariates Higher-order spatial autoregressive varying coefficient model: estimation and specification test Composite quantile estimation in partially functional linear regression model with randomly censored responses Bayesian inference and cure rate modeling for event history data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1