{"title":"Cancer-associated thrombosis: What about microRNAs targeting the tissue factor coagulation pathway?","authors":"Valéria Tavares , Beatriz Vieira Neto , Inês Soares Marques , Joana Assis , Deolinda Pereira , Rui Medeiros","doi":"10.1016/j.bbcan.2023.189053","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cancer patients are often diagnosed with venous thromboembolism<span> (VTE), a cardiovascular disease that substantially decreases their quality of life<span> and survival rate. Haemostasis in these patients is deregulated, which is reflected in the common presentation of a blood hypercoagulation state. Despite the inconsistent results, existing evidence suggests that the expression of </span></span></span>microRNAs (miRNAs) is deregulated in the context of venous </span>thrombogenesis<span> in the general population. However, few miRNAs are known to be linked to cancer-associated VTE due to the lack of studies with oncological patients. Parallelly, coagulation factor<span> III, also known as tissue factor<span> (TF), tissue factor pathway inhibitor 1 (TFPI1) and tissue factor pathway inhibitor 2 (TFPI2) have been proposed to have a central role in cancer-associated VTE and tumour progression. Yet, contrary to what was expected, the role of miRNAs targeting the TF coagulation pathway (or extrinsic coagulation pathway) is poorly explored in cancer-induced thrombogenesis. In this review, in addition to miRNAs implicated in VTE, TF and TFPI1/2-targeting miRNAs were revised. Future studies should clarify the implications of these non-coding RNAs in tumour coagulome.</span></span></span></p></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X23002020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer patients are often diagnosed with venous thromboembolism (VTE), a cardiovascular disease that substantially decreases their quality of life and survival rate. Haemostasis in these patients is deregulated, which is reflected in the common presentation of a blood hypercoagulation state. Despite the inconsistent results, existing evidence suggests that the expression of microRNAs (miRNAs) is deregulated in the context of venous thrombogenesis in the general population. However, few miRNAs are known to be linked to cancer-associated VTE due to the lack of studies with oncological patients. Parallelly, coagulation factor III, also known as tissue factor (TF), tissue factor pathway inhibitor 1 (TFPI1) and tissue factor pathway inhibitor 2 (TFPI2) have been proposed to have a central role in cancer-associated VTE and tumour progression. Yet, contrary to what was expected, the role of miRNAs targeting the TF coagulation pathway (or extrinsic coagulation pathway) is poorly explored in cancer-induced thrombogenesis. In this review, in addition to miRNAs implicated in VTE, TF and TFPI1/2-targeting miRNAs were revised. Future studies should clarify the implications of these non-coding RNAs in tumour coagulome.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.