Inline closed-loop control of bending angles with machine learning supported springback compensation

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-12-13 DOI:10.1007/s12289-023-01802-y
Dirk Alexander Molitor, Viktor Arne, Christian Kubik, Gabriel Noemark, Peter Groche
{"title":"Inline closed-loop control of bending angles with machine learning supported springback compensation","authors":"Dirk Alexander Molitor,&nbsp;Viktor Arne,&nbsp;Christian Kubik,&nbsp;Gabriel Noemark,&nbsp;Peter Groche","doi":"10.1007/s12289-023-01802-y","DOIUrl":null,"url":null,"abstract":"<div><p>Closed-loop control of product properties is becoming increasingly important in forming technology research and enables users to counteract unavoidable uncertainties in semi-finished product properties and process environments. Therefore, closed-loop controlled forming processes are considered to have the potential to reduce tolerances on desired product properties, resulting in consistent qualities. The achievement of associated increases in robustness and reliability is linked to enormous requirements, which in particular include the inline recording of the product properties to be controlled and the subsequent adaptation of the process control through the targeted derivation of manipulated variables. The present paper uses the example of an air bending process to show how the bending angle can be controlled camera-based and how springback can be compensated within a stroke by recording force signals and subsequently predicting the loaded bending angle using machine learning algorithms. The results show that the combined application of camera-based control and machine learning assisted springback compensation leads to highly accurate bending angles, whereby the results strongly depend on the machine learning algorithms and associated data transformation processes used.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01802-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01802-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Closed-loop control of product properties is becoming increasingly important in forming technology research and enables users to counteract unavoidable uncertainties in semi-finished product properties and process environments. Therefore, closed-loop controlled forming processes are considered to have the potential to reduce tolerances on desired product properties, resulting in consistent qualities. The achievement of associated increases in robustness and reliability is linked to enormous requirements, which in particular include the inline recording of the product properties to be controlled and the subsequent adaptation of the process control through the targeted derivation of manipulated variables. The present paper uses the example of an air bending process to show how the bending angle can be controlled camera-based and how springback can be compensated within a stroke by recording force signals and subsequently predicting the loaded bending angle using machine learning algorithms. The results show that the combined application of camera-based control and machine learning assisted springback compensation leads to highly accurate bending angles, whereby the results strongly depend on the machine learning algorithms and associated data transformation processes used.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习支持回弹补偿的内联闭环控制弯曲角
产品性能的闭环控制在成形技术研究中变得越来越重要,它使用户能够应对半成品性能和工艺环境中不可避免的不确定性。因此,闭环控制成形工艺被认为有可能减少所需的产品属性公差,从而获得一致的质量。要实现稳健性和可靠性的相关提高,需要满足大量要求,其中特别包括在线记录需要控制的产品属性,以及随后通过有针对性地推导操纵变量来调整工艺控制。本文以气动折弯工艺为例,展示了如何通过摄像头控制折弯角度,以及如何通过记录力信号并随后使用机器学习算法预测加载折弯角度来补偿冲程内的回弹。结果表明,结合应用基于摄像头的控制和机器学习辅助回弹补偿,可获得高度精确的弯曲角度,而结果在很大程度上取决于所使用的机器学习算法和相关数据转换过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1