Coal and gas outburst prediction model based on principal component analysis and improved support vector machine

Chaojun Fan, Xinfeng Lai, Haiou Wen, Lei Yang
{"title":"Coal and gas outburst prediction model based on principal component analysis and improved support vector machine","authors":"Chaojun Fan,&nbsp;Xinfeng Lai,&nbsp;Haiou Wen,&nbsp;Lei Yang","doi":"10.1016/j.ghm.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>In order to predict the coal outburst risk quickly and accurately, a PCA-FA-SVM based coal and gas outburst risk prediction model was designed. Principal component analysis (PCA) was used to pre-process the original data samples, extract the principal components of the samples, use firefly algorithm (FA) to improve the support vector machine model, and compare and analyze the prediction results of PCA-FA-SVM model with BP model, FA-SVM model, FA-BP model and SVM model. Accuracy rate, recall rate, Macro-F1 and model prediction time were used as evaluation indexes. The results show that: Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model. The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962, recall rate is 0.955, Macro-F1 is 0.957, and model prediction time is 0.312s. Compared with other models, The comprehensive performance of PCA-FA-SVM model is better.</p></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"1 4","pages":"Pages 319-324"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949741823000511/pdfft?md5=0fb77e0793c95100bee9d8a88442af37&pid=1-s2.0-S2949741823000511-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741823000511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to predict the coal outburst risk quickly and accurately, a PCA-FA-SVM based coal and gas outburst risk prediction model was designed. Principal component analysis (PCA) was used to pre-process the original data samples, extract the principal components of the samples, use firefly algorithm (FA) to improve the support vector machine model, and compare and analyze the prediction results of PCA-FA-SVM model with BP model, FA-SVM model, FA-BP model and SVM model. Accuracy rate, recall rate, Macro-F1 and model prediction time were used as evaluation indexes. The results show that: Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model. The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962, recall rate is 0.955, Macro-F1 is 0.957, and model prediction time is 0.312s. Compared with other models, The comprehensive performance of PCA-FA-SVM model is better.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析和改进型支持向量机的煤与瓦斯突出预测模型
为了快速准确地预测煤矿瓦斯突出风险,设计了基于 PCA-FA-SVM 的煤与瓦斯突出风险预测模型。采用主成分分析法(PCA)对原始数据样本进行预处理,提取样本的主成分,利用萤火虫算法(FA)改进支持向量机模型,并将 PCA-FA-SVM 模型与 BP 模型、FA-SVM 模型、FA-BP 模型和 SVM 模型的预测结果进行对比分析。以准确率、召回率、Macro-F1 和模型预测时间作为评价指标。结果表明主成分分析提高了 FA-SVM 模型的预测效率和准确性。PCA-FA-SVM 模型预测煤与瓦斯突出风险的准确率为 0.962,召回率为 0.955,Macro-F1 为 0.957,模型预测时间为 0.312s。与其他模型相比,PCA-FA-SVM 模型的综合性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1