Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach

Kailong Xue , Yun Qi , Hongfei Duan , Anye Cao , Aiwen Wang
{"title":"Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach","authors":"Kailong Xue ,&nbsp;Yun Qi ,&nbsp;Hongfei Duan ,&nbsp;Anye Cao ,&nbsp;Aiwen Wang","doi":"10.1016/j.ghm.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>In order to enhance the accuracy and efficiency of coal and gas outburst prediction, a novel approach combining Kernel Principal Component Analysis (KPCA) with an Improved Whale Optimization Algorithm (IWOA) optimized extreme learning machine (ELM) is proposed for precise forecasting of coal and gas outburst disasters in mines. Firstly, based on the influencing factors of coal and gas outburst disasters, nine coupling indexes are selected, including gas pressure, geological structure, initial velocity of gas emission, and coal structure type. The correlation between each index was analyzed using the Pearson correlation coefficient matrix in SPSS 27, followed by extraction of the principal components of the original data through Kernel Principal Component Analysis (KPCA). The Whale Optimization Algorithm (WOA) was enhanced by incorporating adaptive weight, variable helix position update, and optimal neighborhood disturbance to augment its performance. The improved Whale Optimization Algorithm (IWOA) is subsequently employed to optimize the weight <em>ф</em> of the Extreme Learning Machine (ELM) input layer and the threshold <em>g</em> of the hidden layer, thereby enhancing its predictive accuracy and mitigating the issue of \"over-fitting\" associated with ELM to some extent. The principal components extracted by KPCA were utilized as input, while the outburst risk grade served as output. Subsequently, a comparative analysis was conducted between these results and those obtained from WOA-SVC, PSO-BPNN, and SSA-RF models. The IWOA-ELM model accurately predicts the risk grade of coal and gas outburst disasters, with results consistent with actual situations. Compared to other models tested, the model's performance showed an increase in <em>Ac</em> by 0.2, 0.3, and 0.2 respectively; <em>P</em> increased by 0.15, 0.2167, and 0.1333 respectively; <em>R</em> increased by 0.25, 0.3, and 0.2333 respectively; <em>F</em><sub>1</sub><em>-Score</em> increased by 0.2031, 0.2607, and 0.1864 respectively; Kappa coefficient <em>k</em> increased by 0.3226, 0.4762 and 0.3175, respectively. The practicality and stability of the IWOA-ELM model were verified through its application in a coal mine in Shanxi Province where the predicted values exactly matched the actual values. This indicates that this model is more suitable for predicting coal and gas outburst disaster risks.</div></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"2 4","pages":"Pages 279-288"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741824000669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to enhance the accuracy and efficiency of coal and gas outburst prediction, a novel approach combining Kernel Principal Component Analysis (KPCA) with an Improved Whale Optimization Algorithm (IWOA) optimized extreme learning machine (ELM) is proposed for precise forecasting of coal and gas outburst disasters in mines. Firstly, based on the influencing factors of coal and gas outburst disasters, nine coupling indexes are selected, including gas pressure, geological structure, initial velocity of gas emission, and coal structure type. The correlation between each index was analyzed using the Pearson correlation coefficient matrix in SPSS 27, followed by extraction of the principal components of the original data through Kernel Principal Component Analysis (KPCA). The Whale Optimization Algorithm (WOA) was enhanced by incorporating adaptive weight, variable helix position update, and optimal neighborhood disturbance to augment its performance. The improved Whale Optimization Algorithm (IWOA) is subsequently employed to optimize the weight ф of the Extreme Learning Machine (ELM) input layer and the threshold g of the hidden layer, thereby enhancing its predictive accuracy and mitigating the issue of "over-fitting" associated with ELM to some extent. The principal components extracted by KPCA were utilized as input, while the outburst risk grade served as output. Subsequently, a comparative analysis was conducted between these results and those obtained from WOA-SVC, PSO-BPNN, and SSA-RF models. The IWOA-ELM model accurately predicts the risk grade of coal and gas outburst disasters, with results consistent with actual situations. Compared to other models tested, the model's performance showed an increase in Ac by 0.2, 0.3, and 0.2 respectively; P increased by 0.15, 0.2167, and 0.1333 respectively; R increased by 0.25, 0.3, and 0.2333 respectively; F1-Score increased by 0.2031, 0.2607, and 0.1864 respectively; Kappa coefficient k increased by 0.3226, 0.4762 and 0.3175, respectively. The practicality and stability of the IWOA-ELM model were verified through its application in a coal mine in Shanxi Province where the predicted values exactly matched the actual values. This indicates that this model is more suitable for predicting coal and gas outburst disaster risks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1