An Improved Fractional Moment Maximum Entropy Method with Polynomial Fitting

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Mechanical Design Pub Date : 2023-12-07 DOI:10.1115/1.4064247
Gang Li, Yixuan Wang, Yan Zeng, W. He
{"title":"An Improved Fractional Moment Maximum Entropy Method with Polynomial Fitting","authors":"Gang Li, Yixuan Wang, Yan Zeng, W. He","doi":"10.1115/1.4064247","DOIUrl":null,"url":null,"abstract":"\n The moment method is commonly used in reliability analysis, in which the maximum entropy method (MEM) and polynomial fitting (PF) have been widely used due to their advantages in accuracy and efficiency, respectively. In this paper, we propose a novel reliability analysis method by combining MEM and PF. The probability density function is preliminarily estimated using the fractional moment maximum entropy method (FM-MEM), based on which PF is then used to further improve the accuracy. The proposed method can avoid the phenomenon of the negative probability density and function oscillations in PF effectively. Moreover, the order of the exponential polynomial in the FM-MEM is adaptively selected in the preliminary solution calculation process. An iterative process for the number of exponential polynomial terms is also proposed, using the integral of the moment error function and the integrals of the local and global negative probability density as the convergence criteria. Four numerical examples and one engineering example are tested, and the results are compared with those of the Monte Carlo simulation and the classical FM-MEM results, respectively, demonstrating the good performance of the proposed method.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"30 22","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064247","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The moment method is commonly used in reliability analysis, in which the maximum entropy method (MEM) and polynomial fitting (PF) have been widely used due to their advantages in accuracy and efficiency, respectively. In this paper, we propose a novel reliability analysis method by combining MEM and PF. The probability density function is preliminarily estimated using the fractional moment maximum entropy method (FM-MEM), based on which PF is then used to further improve the accuracy. The proposed method can avoid the phenomenon of the negative probability density and function oscillations in PF effectively. Moreover, the order of the exponential polynomial in the FM-MEM is adaptively selected in the preliminary solution calculation process. An iterative process for the number of exponential polynomial terms is also proposed, using the integral of the moment error function and the integrals of the local and global negative probability density as the convergence criteria. Four numerical examples and one engineering example are tested, and the results are compared with those of the Monte Carlo simulation and the classical FM-MEM results, respectively, demonstrating the good performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带多项式拟合的改进型分数矩最大熵法
矩量法是可靠性分析中常用的方法,其中最大熵法(MEM)和多项式拟合法(PF)分别以其精度和效率方面的优势得到了广泛的应用。本文提出了一种将MEM和PF相结合的可靠性分析方法,利用分数矩最大熵法(FM-MEM)初步估计概率密度函数,在此基础上利用PF进一步提高可靠性分析的精度。该方法可以有效地避免频域的负概率密度和函数振荡现象。此外,在预解计算过程中,自适应地选择了指数多项式的阶数。以矩误差函数的积分和局部和全局负概率密度的积分作为收敛准则,提出了指数多项式项个数的迭代过程。最后对4个数值算例和1个工程算例进行了测试,并将结果与蒙特卡罗模拟结果和经典的FM-MEM结果进行了比较,验证了所提方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mechanical Design
Journal of Mechanical Design 工程技术-工程:机械
CiteScore
8.00
自引率
18.20%
发文量
139
审稿时长
3.9 months
期刊介绍: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials. Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
期刊最新文献
Joint Special Issue on Advances in Design and Manufacturing for Sustainability Optimization of Tooth Profile Modification Amount and Manufacturing Tolerance Allocation for RV Reducer under Reliability Constraint Critical thinking assessment in engineering education: A Scopus-based literature review Accounting for Machine Learning Prediction Errors in Design Thinking Beyond the Default User: The Impact of Gender, Stereotypes, and Modality on Interpretation of User Needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1