A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Technology and Web Engineering Pub Date : 2023-12-07 DOI:10.4018/ijitwe.334595
Ke Zhang, Shunmin Wang, Yuyuan Yu
{"title":"A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews","authors":"Ke Zhang, Shunmin Wang, Yuyuan Yu","doi":"10.4018/ijitwe.334595","DOIUrl":null,"url":null,"abstract":"To overcome limitations in existing methods for sentiment analysis of tourism reviews, the authors propose an image-text multimodal sentiment analysis method (TBGAV). It consists of three modules: image sentiment extraction, text sentiment extraction, and image-text fusion. The image sentiment extraction module employs a pre-trained VGG19 model to capture sentiment features. The text sentiment extraction module utilizes the tiny bidirectional encoder representations from transformers (TinyBERT) model, incorporating the bidirectional recurrent neural network and attention (BiGRU-Attention) module for deeper sentiment semantics. The image-text fusion module employs the dual linear fusion approach to correlate image-text links and the maximum decision-making approach for high-precision sentiment prediction. TBGAV achieves superior performance on the Yelp dataset with accuracy, recall rates, and F1 scores of 77.51%, 78.01%, and 78.34%, respectively, outperforming existing methods. Accordingly, TBGAV is expected to help improve travel-related recommender systems and marketing strategies.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":"32 7","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.334595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome limitations in existing methods for sentiment analysis of tourism reviews, the authors propose an image-text multimodal sentiment analysis method (TBGAV). It consists of three modules: image sentiment extraction, text sentiment extraction, and image-text fusion. The image sentiment extraction module employs a pre-trained VGG19 model to capture sentiment features. The text sentiment extraction module utilizes the tiny bidirectional encoder representations from transformers (TinyBERT) model, incorporating the bidirectional recurrent neural network and attention (BiGRU-Attention) module for deeper sentiment semantics. The image-text fusion module employs the dual linear fusion approach to correlate image-text links and the maximum decision-making approach for high-precision sentiment prediction. TBGAV achieves superior performance on the Yelp dataset with accuracy, recall rates, and F1 scores of 77.51%, 78.01%, and 78.34%, respectively, outperforming existing methods. Accordingly, TBGAV is expected to help improve travel-related recommender systems and marketing strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 TBGAV 的旅游评论图像-文本多模态情感分析方法
为了克服现有旅游评论情感分析方法的局限性,作者提出了一种图像-文本多模态情感分析方法(TBGAV)。它包括三个模块:图像情感提取、文本情感提取和图像-文本融合。图像情感提取模块采用预训练的VGG19模型捕获情感特征。文本情感提取模块利用了来自变形器的微小双向编码器表示(TinyBERT)模型,结合了双向循环神经网络和注意(BiGRU-Attention)模块来实现更深层次的情感语义。图像-文本融合模块采用双线性融合方法关联图像-文本链接,采用最大决策方法进行高精度情感预测。TBGAV在Yelp数据集上的准确率、召回率和F1分数分别达到77.51%、78.01%和78.34%,优于现有方法。因此,TBGAV有望帮助改善旅游相关的推荐系统和营销策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
24
期刊介绍: Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.
期刊最新文献
Quantitative Evaluation Method of Psychological Quality of College Teachers Based on Fuzzy Logic Personalized Recommendation Method of E-Commerce Products Based on In-Depth User Interest Portraits Application of QGA-BP Neural Network in Debt Risk Assessment of Government Platforms Research on VRP Model Optimization of Cold Chain Logistics Under Low-Carbon Constraints A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1