{"title":"Wetlands as integral parts of surface water – groundwater interactions in the Athabasca Oil Sands Area: review and synthesis","authors":"O. Volik, Richard Petrone, Jonathan Price","doi":"10.1139/er-2023-0064","DOIUrl":null,"url":null,"abstract":"Wetlands comprise unique water storage and conveyance mechanisms that maintain landscape integrity under the sub-humid climate in the Athabasca Oil Sands Area. In addition to their internal function, wetlands support a two-way hydrological connection to adjacent uplands and provide water for downstream water courses. Understanding the role of wetlands as integral parts of surface water (SW) – groundwater (GW) exchange can provide insights into the functioning of the hydrological system as a whole and contribute to thoughtful water management strategies and better coordination of monitoring efforts in the areas affected by oil sands (OS) activities. As such, this paper summarizes the current state of hydrological knowledge on the role of wetlands in SW – GW interactions based on studies conducted within the Western Boreal Plains. In particular, the role of wetland soils and their properties in SW – GW interactions, the effects of wetlands on landscape hydrological connectivity and watershed runoff, and features of ‘wetland – aquifer” and “wetland – open waterbody” interactions were reviewed. Given that alteration of SW – GW interactions in wetlands can occur as a result of anthropogenic disturbances, coordination of GW, SW, and wetland monitoring efforts and targeting areas where increased SW – GW exchange occurs would be beneficial for the economic and logistical efficiency of the OS monitoring network.","PeriodicalId":49208,"journal":{"name":"Environmental Reviews","volume":"124 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Reviews","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1139/er-2023-0064","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Wetlands comprise unique water storage and conveyance mechanisms that maintain landscape integrity under the sub-humid climate in the Athabasca Oil Sands Area. In addition to their internal function, wetlands support a two-way hydrological connection to adjacent uplands and provide water for downstream water courses. Understanding the role of wetlands as integral parts of surface water (SW) – groundwater (GW) exchange can provide insights into the functioning of the hydrological system as a whole and contribute to thoughtful water management strategies and better coordination of monitoring efforts in the areas affected by oil sands (OS) activities. As such, this paper summarizes the current state of hydrological knowledge on the role of wetlands in SW – GW interactions based on studies conducted within the Western Boreal Plains. In particular, the role of wetland soils and their properties in SW – GW interactions, the effects of wetlands on landscape hydrological connectivity and watershed runoff, and features of ‘wetland – aquifer” and “wetland – open waterbody” interactions were reviewed. Given that alteration of SW – GW interactions in wetlands can occur as a result of anthropogenic disturbances, coordination of GW, SW, and wetland monitoring efforts and targeting areas where increased SW – GW exchange occurs would be beneficial for the economic and logistical efficiency of the OS monitoring network.
期刊介绍:
Published since 1993, Environmental Reviews is a quarterly journal that presents authoritative literature reviews on a wide range of environmental science and associated environmental studies topics, with emphasis on the effects on and response of both natural and manmade ecosystems to anthropogenic stress. The authorship and scope are international, with critical literature reviews submitted and invited on such topics as sustainability, water supply management, climate change, harvesting impacts, acid rain, pesticide use, lake acidification, air and marine pollution, oil and gas development, biological control, food chain biomagnification, rehabilitation of polluted aquatic systems, erosion, forestry, bio-indicators of environmental stress, conservation of biodiversity, and many other environmental issues.