I. Shender, A. Pogodin, M. Filep, T. Malakhovska, O. Kokhan, V.S. Bilanych, K. V. Skubenych, O. I. Symkanych, V. Izai, L. Suslikov
{"title":"Influence of cation Si4+↔Ge4+ and P5+↔Ge4+ sub-stitution on the mechanical parameters of single crystals Ag7(Si1–xGex)S5I and Ag6+x(P1–xGex)S5I","authors":"I. Shender, A. Pogodin, M. Filep, T. Malakhovska, O. Kokhan, V.S. Bilanych, K. V. Skubenych, O. I. Symkanych, V. Izai, L. Suslikov","doi":"10.15407/spqeo26.04.408","DOIUrl":null,"url":null,"abstract":"Herein we present the results of microhardness investigations aimed at monocrystalline samples of Ag 7 (Si 1–x Ge x )S 5 I (0, 0.2, 0.4, 0.6, 0.8, 1) and Ag 6+x (P 1–x Ge x )S 5 I (0, 0.25, 0.5, 0.75, 1) solid solutions. The dependence of microhardness H on the load P and composition were investigated. It has been observed that the microhardness dependence on the applied load is characterized by a tendency to decrease with increasing the load. It indicates a presence of “normal” size effect in both Ag 7 (Si 1–x Ge x )S 5 I and Ag 6+x (P 1–x Ge x )S 5 I (0, 0.25, 0.5, 0.75, 1) solid solutions. The revealed size effects of hardness in single crystals of Ag 7 (Si 1–x Ge x )S 5 I and Ag 6+x (P 1-x Ge x )S 5 I solid solutions have been analyzed within the framework of the gradient theory of plasticity. The corresponding parameters of the model of geometrically necessary dislocations have been determined.","PeriodicalId":21598,"journal":{"name":"Semiconductor physics, quantum electronics and optoelectronics","volume":"68 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor physics, quantum electronics and optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo26.04.408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Herein we present the results of microhardness investigations aimed at monocrystalline samples of Ag 7 (Si 1–x Ge x )S 5 I (0, 0.2, 0.4, 0.6, 0.8, 1) and Ag 6+x (P 1–x Ge x )S 5 I (0, 0.25, 0.5, 0.75, 1) solid solutions. The dependence of microhardness H on the load P and composition were investigated. It has been observed that the microhardness dependence on the applied load is characterized by a tendency to decrease with increasing the load. It indicates a presence of “normal” size effect in both Ag 7 (Si 1–x Ge x )S 5 I and Ag 6+x (P 1–x Ge x )S 5 I (0, 0.25, 0.5, 0.75, 1) solid solutions. The revealed size effects of hardness in single crystals of Ag 7 (Si 1–x Ge x )S 5 I and Ag 6+x (P 1-x Ge x )S 5 I solid solutions have been analyzed within the framework of the gradient theory of plasticity. The corresponding parameters of the model of geometrically necessary dislocations have been determined.