Stochastic Precipitation Model Using Large Ensemble Data

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY Journal of Disaster Research Pub Date : 2023-12-01 DOI:10.20965/jdr.2023.p0868
Mizuki Shinohara, Masaru Inatsu
{"title":"Stochastic Precipitation Model Using Large Ensemble Data","authors":"Mizuki Shinohara, Masaru Inatsu","doi":"10.20965/jdr.2023.p0868","DOIUrl":null,"url":null,"abstract":"A precipitation dataset is created to estimate a reproduction period of several thousand years for stochastic flood risk assessment in the non-life insurance sector. A stochastic precipitation model for natural hazard risk assessment developed in a previous study was applied to a large ensemble data. The model was used to obtain the precipitation ensembles for the recent and future climate by +2 K and +4 K increases in mean temperature, respectively. We successfully created 10,000 years of precipitation data, which makes it possible to obtain precipitation data over a 1,000-year return period.","PeriodicalId":46831,"journal":{"name":"Journal of Disaster Research","volume":" February","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Disaster Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jdr.2023.p0868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A precipitation dataset is created to estimate a reproduction period of several thousand years for stochastic flood risk assessment in the non-life insurance sector. A stochastic precipitation model for natural hazard risk assessment developed in a previous study was applied to a large ensemble data. The model was used to obtain the precipitation ensembles for the recent and future climate by +2 K and +4 K increases in mean temperature, respectively. We successfully created 10,000 years of precipitation data, which makes it possible to obtain precipitation data over a 1,000-year return period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用大型集合数据的随机降水模型
建立了一个降水数据集,用于估算非寿险部门随机洪水风险评估的几千年再现期。将前人研究建立的自然灾害风险评估随机降水模型应用于大型集合数据。利用该模式分别获得了平均温度升高+2 K和+4 K对近期和未来气候的降水集合。我们成功创建了1万年的降水数据,这使得获得1000年的降水数据成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Disaster Research
Journal of Disaster Research GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
37.50%
发文量
113
期刊最新文献
Impact Resistance Test of Cladding by Using Gravel Applicability of a Modified I-D Method for Predicting Slope Failure to Different Slopes Disaster Preparedness Using Local Wisdom Approach in Palu City Stochastic Precipitation Model Using Large Ensemble Data Estimation of the Seismic Source of the 1974 Lima Peru Earthquake and Tsunami (Mw 8.1)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1