Analysis of Antioxidant Property from Water Extraction of Garcia Mangostana Using Response Surface Methodology

T W Chung, Irwan Saleh Kurniawan
{"title":"Analysis of Antioxidant Property from Water Extraction of Garcia Mangostana Using Response Surface Methodology","authors":"T W Chung, Irwan Saleh Kurniawan","doi":"10.18178/ijcea.2023.14.4.804","DOIUrl":null,"url":null,"abstract":"Mangosteen (Garcia mangostana) is an exotic fruit that can be found widely in Southeast Asia. Mangosteen pericarp contains bioactive compound that has pharmacological properties, including antioxidants, anticarcinogenic, and also suggested its applicability for skincare products. Water extraction is more applicable for industry due to simple process, low cost, and neutral reaction. In this study, water extraction on the pericarp of mangosteen was applied and the operating parameters were discussed by using Response Surface Methodology (RSM) for high recovery of antioxidant extract from the mangosteen pericarp. The experimental design used three factors, solid-to-liquid ratio (g/ml), temperature (oC) and extraction time (hour), were analyzed to discuss two responses, DPPH radical scavenging effect (DPPH) and Ferric Reducing Antioxidant Power (FRAP). Under the operating conditions, the highest FRAP is 0.818 abs at the factors of 1:10 (g/ml), 65 oC, and 3-hour. DPPH is significantly high for all RSM pattern. The optimum parameters determined by using RSM are at 1:10 (g/ml), 59.74 oC, and 2.87 hours with DPPH 81.01% and FRAP 0.789 abs.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":" 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2023.14.4.804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mangosteen (Garcia mangostana) is an exotic fruit that can be found widely in Southeast Asia. Mangosteen pericarp contains bioactive compound that has pharmacological properties, including antioxidants, anticarcinogenic, and also suggested its applicability for skincare products. Water extraction is more applicable for industry due to simple process, low cost, and neutral reaction. In this study, water extraction on the pericarp of mangosteen was applied and the operating parameters were discussed by using Response Surface Methodology (RSM) for high recovery of antioxidant extract from the mangosteen pericarp. The experimental design used three factors, solid-to-liquid ratio (g/ml), temperature (oC) and extraction time (hour), were analyzed to discuss two responses, DPPH radical scavenging effect (DPPH) and Ferric Reducing Antioxidant Power (FRAP). Under the operating conditions, the highest FRAP is 0.818 abs at the factors of 1:10 (g/ml), 65 oC, and 3-hour. DPPH is significantly high for all RSM pattern. The optimum parameters determined by using RSM are at 1:10 (g/ml), 59.74 oC, and 2.87 hours with DPPH 81.01% and FRAP 0.789 abs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用响应面方法分析加西亚芒果水提取物的抗氧化特性
山竹(加西亚山竹)是一种奇异的水果,可以在东南亚广泛发现。山竹果皮中含有生物活性化合物,具有抗氧化、抗癌等药理特性,也被认为适用于护肤品。水萃取工艺简单、成本低、反应中性,更适用于工业生产。以山竹果皮为研究对象,采用响应面法(RSM)对水提工艺参数进行了探讨,以期获得高回收率的山竹果皮抗氧化提取物。实验设计采用料液比(g/ml)、温度(oC)和提取时间(h) 3个因素进行分析,探讨其对DPPH自由基的清除效果(DPPH)和铁还原抗氧化能力(FRAP)的影响。在操作条件下,在1:10 (g/ml)、65℃、3小时的条件下,FRAP最高为0.818 abs。DPPH在所有RSM模式中均显著升高。RSM法确定的最佳工艺参数为:1:10 (g/ml), 59.74℃,2.87 h, DPPH 81.01%, FRAP 0.789 abs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Antioxidant Property from Water Extraction of Garcia Mangostana Using Response Surface Methodology Effect of Blumea Balsamifera Extract on the Kinetics of Calcium Oxalate Monohydrate (COM) Dissolution Biotransformation of Lignocellulosic Biomass Hydrolysate into Polyhydroxybutyrate Biopolymer via Ralstonia Eutropha Molecularly Imprinted Polymer (MIP)-Based Electrochemical Sensor for Determination of Amyloid β-42 in Alzheimer’s Disease A Molecularly Imprinted Polymer-Based Electrochemical Sensor for Heart Failure Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1