Manh Cuong Ho , Anh Tien Tran , Donghyun Lee , Jeongyeup Paek , Wonjong Noh , Sungrae Cho
{"title":"A DDPG-based energy efficient federated learning algorithm with SWIPT and MC-NOMA","authors":"Manh Cuong Ho , Anh Tien Tran , Donghyun Lee , Jeongyeup Paek , Wonjong Noh , Sungrae Cho","doi":"10.1016/j.icte.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Federated learning (FL) has emerged as a promising distributed machine learning technique. It has the potential to play a key role in future Internet of Things (IoT) networks by ensuring the security and privacy of user data combined with efficient utilization of communication resources. This paper addresses the challenge of maximizing energy efficiency in FL systems. We employed simultaneous wireless information and power transfer (SWIPT) and multi-carrier non-orthogonal multiple access (MC-NOMA) techniques. Also, we jointly optimized power allocation and central processing unit (CPU) resource allocation to minimize latency-constrained energy consumption. We formulated an optimization problem using a Markov decision process (MDP) and utilized a deep deterministic policy gradient (DDPG) reinforcement learning algorithm to solve our MDP problem. We tested the proposed algorithm through extensive simulations and confirmed it converges in a stable manner and provides enhanced energy efficiency compared to conventional schemes.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 600-607"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523001534/pdfft?md5=b839734416c8d6f8c91205a34647aba5&pid=1-s2.0-S2405959523001534-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523001534","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) has emerged as a promising distributed machine learning technique. It has the potential to play a key role in future Internet of Things (IoT) networks by ensuring the security and privacy of user data combined with efficient utilization of communication resources. This paper addresses the challenge of maximizing energy efficiency in FL systems. We employed simultaneous wireless information and power transfer (SWIPT) and multi-carrier non-orthogonal multiple access (MC-NOMA) techniques. Also, we jointly optimized power allocation and central processing unit (CPU) resource allocation to minimize latency-constrained energy consumption. We formulated an optimization problem using a Markov decision process (MDP) and utilized a deep deterministic policy gradient (DDPG) reinforcement learning algorithm to solve our MDP problem. We tested the proposed algorithm through extensive simulations and confirmed it converges in a stable manner and provides enhanced energy efficiency compared to conventional schemes.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.