A temperature-based synthesis and characterization study of aluminum-incorporated diamond-like carbon thin films

IF 2 Q2 ENGINEERING, MECHANICAL Frontiers in Mechanical Engineering Pub Date : 2023-12-01 DOI:10.3389/fmech.2023.1325040
Ranjan Kumar Ghadai, G. Shanmugasundar, Lenka Cepova, Soham Das, Premchand Kumar Mahto, K. Kalita
{"title":"A temperature-based synthesis and characterization study of aluminum-incorporated diamond-like carbon thin films","authors":"Ranjan Kumar Ghadai, G. Shanmugasundar, Lenka Cepova, Soham Das, Premchand Kumar Mahto, K. Kalita","doi":"10.3389/fmech.2023.1325040","DOIUrl":null,"url":null,"abstract":"The present work deals with the study of various properties of aluminum (Al)-incorporated diamond-like carbon (DLC) thin films synthesized using the atmospheric pressure chemical vapor deposition (APCVD) technique by varying the deposition temperature (Td) and keeping the N2 flow rate constant. Surface morphology analysis, resistance to corrosion, nanohardness (H), and Young’s modulus (E) of the coatings were carried out using atomic force microscopy (AFM), corrosion test, scanning electron microscopy (SEM), and nanoindentation test, respectively. SEM results showed a smoother surface morphology of the coatings grown at different process temperatures. With an increase in process temperature, the coating roughness (Ra) lies in the range of 20–36 µm. The corrosion resistance of the coating was found to be reduced with a consecutive increase in the deposition temperature from 800℃ to 880℃. However, above 880℃, the resistance increases further, and it may be due to the presence of more Al weight percentage in the coating. The nanoindentation result revealed that H and E of the coating increase with an increase in the CVD process temperature. The elastic–plastic property indicated by H/E and H3/E2, which are also indicators of the wear properties of the coating, were studied using the nanoindentation technique. The residual stresses (σ) calculated using Stoney’s equation revealed a reduction in residual stress with an increase in the process temperature.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2023.1325040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present work deals with the study of various properties of aluminum (Al)-incorporated diamond-like carbon (DLC) thin films synthesized using the atmospheric pressure chemical vapor deposition (APCVD) technique by varying the deposition temperature (Td) and keeping the N2 flow rate constant. Surface morphology analysis, resistance to corrosion, nanohardness (H), and Young’s modulus (E) of the coatings were carried out using atomic force microscopy (AFM), corrosion test, scanning electron microscopy (SEM), and nanoindentation test, respectively. SEM results showed a smoother surface morphology of the coatings grown at different process temperatures. With an increase in process temperature, the coating roughness (Ra) lies in the range of 20–36 µm. The corrosion resistance of the coating was found to be reduced with a consecutive increase in the deposition temperature from 800℃ to 880℃. However, above 880℃, the resistance increases further, and it may be due to the presence of more Al weight percentage in the coating. The nanoindentation result revealed that H and E of the coating increase with an increase in the CVD process temperature. The elastic–plastic property indicated by H/E and H3/E2, which are also indicators of the wear properties of the coating, were studied using the nanoindentation technique. The residual stresses (σ) calculated using Stoney’s equation revealed a reduction in residual stress with an increase in the process temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于温度的铝掺杂类金刚石碳薄膜合成与表征研究
本文研究了常压化学气相沉积(APCVD)技术在改变沉积温度(Td)和保持N2流量恒定的条件下合成的Al -类金刚石(DLC)薄膜的各种性能。采用原子力显微镜(AFM)、腐蚀测试、扫描电镜(SEM)和纳米压痕测试分别对涂层的表面形貌、耐蚀性、纳米硬度(H)和杨氏模量(E)进行分析。扫描电镜结果表明,在不同的工艺温度下生长的涂层表面形貌更光滑。随着工艺温度的升高,涂层粗糙度(Ra)在20 ~ 36µm之间。随着沉积温度从800℃连续升高到880℃,涂层的耐蚀性降低。而在880℃以上,电阻进一步增大,这可能是由于涂层中存在更多的Al重量百分比所致。纳米压痕结果表明,涂层的H和E随CVD工艺温度的升高而升高。利用纳米压痕技术研究了表征涂层磨损性能的H/E和H3/E2的弹塑性性能。利用Stoney公式计算的残余应力(σ)表明,随着工艺温度的升高,残余应力减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Mechanical Engineering
Frontiers in Mechanical Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
4.40
自引率
0.00%
发文量
115
审稿时长
14 weeks
期刊最新文献
Finite element analysis and automation of a medium scale grinder applied to the manufacture of cassava starch Editorial: Lightweight mechanical and aerospace structures and materials Analysis of the thickness of layered armor to provide protection against 7.62 mm ball projectiles using experimental and numerical methods Parameter fuzzy rectification for sliding mode control of five-phase permanent magnet synchronous motor speed control system Surrogate-based worst-case analysis of a knee joint model using Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1