Performance Optimization of Electrochemical Machining Parameters on Aluminum Metal Matrix Composite

N. Rajan, M. Naga Swapna Sri, P. Anusha, R. Thanigaivelan, S. Vijayakumar
{"title":"Performance Optimization of Electrochemical Machining Parameters on Aluminum Metal Matrix Composite","authors":"N. Rajan, M. Naga Swapna Sri, P. Anusha, R. Thanigaivelan, S. Vijayakumar","doi":"10.3103/s1068375523060157","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The aluminum metal matrix composite (AMMC) is now occupying an irreplaceable space in various industries due its advantages such as a great strength to the weight ratio, good wear resistance, and a reduced density. In this paper, the AMMC was developed using aluminum 7075 reinforced with 5 and 10% boron carbide. The L<sub>18</sub> orthogonal array was used for conducting the electrochemical micromachining experiments. The AMMC was a wire cut into thin sheets; and specimen 1 designates the AMMC with 5% boron carbide, and specimen 2 designates the AMMC with 10% boron carbide. The tool electrode was of a diameter of 0.5 mm, and sodium nitrate was used as an electrolyte. The technique for order of preference by similarity to ideal solution and the principal component analysis were utilised in order to find out the best parameter combination on the machining speed, the diametral overcut, and the delamination factor. The electrolyte concentration of 35 g/L, the voltage of 11 V, and the duty cycle of 70% were found to be the optimal combination for the machining speed, the diametral overcut, and the delamination factor in specimen 1. The ANOVA analysis results showed that the duty cycle is a significant factor, with its 53.5% contribution.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1068375523060157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The aluminum metal matrix composite (AMMC) is now occupying an irreplaceable space in various industries due its advantages such as a great strength to the weight ratio, good wear resistance, and a reduced density. In this paper, the AMMC was developed using aluminum 7075 reinforced with 5 and 10% boron carbide. The L18 orthogonal array was used for conducting the electrochemical micromachining experiments. The AMMC was a wire cut into thin sheets; and specimen 1 designates the AMMC with 5% boron carbide, and specimen 2 designates the AMMC with 10% boron carbide. The tool electrode was of a diameter of 0.5 mm, and sodium nitrate was used as an electrolyte. The technique for order of preference by similarity to ideal solution and the principal component analysis were utilised in order to find out the best parameter combination on the machining speed, the diametral overcut, and the delamination factor. The electrolyte concentration of 35 g/L, the voltage of 11 V, and the duty cycle of 70% were found to be the optimal combination for the machining speed, the diametral overcut, and the delamination factor in specimen 1. The ANOVA analysis results showed that the duty cycle is a significant factor, with its 53.5% contribution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝金属基复合材料电化学加工参数的性能优化
摘要铝金属基复合材料(AMMC)以其强度比重量比大、耐磨性好、密度小等优点,在各行业中占据着不可替代的地位。本文采用5%和10%碳化硼增强7075铝合金,研制了复合材料复合材料(AMMC)。采用L18正交阵列进行了电化学微加工实验。AMMC是一根切成薄片的电线;试件1为含5%碳化硼的AMMC,试件2为含10%碳化硼的AMMC。工具电极直径为0.5 mm,使用硝酸钠作为电解液。利用与理想溶液相似度优先排序法和主成分分析法,找出加工速度、直径过切量和分层系数的最佳参数组合。在样品1中,电解液浓度为35 g/L,电压为11 V,占空比为70%是加工速度、直径过切和分层系数的最佳组合。方差分析结果表明,占空比是一个显著的因素,其贡献为53.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Magnetohydrodynamics with Application to the Study of Electrolysis and Turbulence Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides Silicone Rubber Treatment with a Sodium Chloride Solution in the Presence of an Electric Field Composition, Structure, and Wear Resistance of Surface Nanostructures Obtained by Electric Spark Alloying of 65G Steel Electret Properties of PET/AlOx Films with a Protective Coating Based on Acrylic Copolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1