Praveen Reddy, Chinmaya Prasad Padhy, P. Janaki Ramulu
{"title":"Anisotropy effects on the tensile properties of AA5052 and AA5052-PVC-AA5052 sandwich sheets","authors":"Praveen Reddy, Chinmaya Prasad Padhy, P. Janaki Ramulu","doi":"10.1515/mt-2023-0260","DOIUrl":null,"url":null,"abstract":"Abstract The essence on sheet metal industry innovation for making light weight bodies has been increasing day-to-day in the automotive sector. Based on the current demand and significance of sheet metals, the present work has been carried out on AA5052-PVC-AA5052 sandwich sheets to find out its tensile behaviour and hence related mechanical properties. The tensile behaviours of as received AA5052 alloy sheet of 1 mm thickness, PVC sheet of 0.5 mm thickness and AA5052-PVC-AA5052 sandwich sheet of 2.5 mm thickness were investigated. From the test results, the mechanical properties like yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), total elongation (TE), strain hardening exponent (n) and material strength coefficient (K) were evaluated. From the experimental results, rolling direction of base metal AA5052 alloy sheet has an influence on the mechanical properties; moreover, among three rolling directions such as 0°, 45° and 90°, better mechanical properties have been observed in 90° rolling direction. Similar tendency is seen in the case of sandwich sheets of 90°-P-90° rolling direction than other sandwich sheets. From this work, one can understand the improvement of mechanical properties with different combinations and rolling directions of AA5052 alloy sheet. The manufacturing industry can use these data as it is for their inclusion to the future products.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":"38 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0260","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The essence on sheet metal industry innovation for making light weight bodies has been increasing day-to-day in the automotive sector. Based on the current demand and significance of sheet metals, the present work has been carried out on AA5052-PVC-AA5052 sandwich sheets to find out its tensile behaviour and hence related mechanical properties. The tensile behaviours of as received AA5052 alloy sheet of 1 mm thickness, PVC sheet of 0.5 mm thickness and AA5052-PVC-AA5052 sandwich sheet of 2.5 mm thickness were investigated. From the test results, the mechanical properties like yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), total elongation (TE), strain hardening exponent (n) and material strength coefficient (K) were evaluated. From the experimental results, rolling direction of base metal AA5052 alloy sheet has an influence on the mechanical properties; moreover, among three rolling directions such as 0°, 45° and 90°, better mechanical properties have been observed in 90° rolling direction. Similar tendency is seen in the case of sandwich sheets of 90°-P-90° rolling direction than other sandwich sheets. From this work, one can understand the improvement of mechanical properties with different combinations and rolling directions of AA5052 alloy sheet. The manufacturing industry can use these data as it is for their inclusion to the future products.
期刊介绍:
Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.