A 4.24-GHz 128×256 SRAM Operating Double Pump Read Write Same Cycle in 5-nm Technology

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Solid-State Circuits Letters Pub Date : 2023-11-27 DOI:10.1109/LSSC.2023.3336773
Nick Zhang;Young Suk Kim;Peter Hsu;Samsoo Kim;Derek Tao;Hung-Jen Liao;P. W. Wang;Geoffrey Yeap;Quincy Li;Tsung-Yung Jonathan Chang
{"title":"A 4.24-GHz 128×256 SRAM Operating Double Pump Read Write Same Cycle in 5-nm Technology","authors":"Nick Zhang;Young Suk Kim;Peter Hsu;Samsoo Kim;Derek Tao;Hung-Jen Liao;P. W. Wang;Geoffrey Yeap;Quincy Li;Tsung-Yung Jonathan Chang","doi":"10.1109/LSSC.2023.3336773","DOIUrl":null,"url":null,"abstract":"A High-Speed High-Density 1R1W two port 32Kbit (\n<inline-formula> <tex-math>$128\\times 256$ </tex-math></inline-formula>\n) SRAM with single port 6T bitcell macro is proposed. A read-then-write (RTW) double pump CLK generation circuit with tracking bitline (TRKBL) bypassing is proposed to boost read and write performance. A local interlock circuit (LIC) is introduced in Sense-Amp to reduce active power and push Fmax further. To mitigate metal RC degradation, double metal scheme is applied to improve signal integrity and enhance overall operating cycle time. The silicon results show that the slow corner wafer was able to achieve 4.24 GHz at 1.0 V/100 °C in 5-nm FinFET technology.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10328755/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

A High-Speed High-Density 1R1W two port 32Kbit ( $128\times 256$ ) SRAM with single port 6T bitcell macro is proposed. A read-then-write (RTW) double pump CLK generation circuit with tracking bitline (TRKBL) bypassing is proposed to boost read and write performance. A local interlock circuit (LIC) is introduced in Sense-Amp to reduce active power and push Fmax further. To mitigate metal RC degradation, double metal scheme is applied to improve signal integrity and enhance overall operating cycle time. The silicon results show that the slow corner wafer was able to achieve 4.24 GHz at 1.0 V/100 °C in 5-nm FinFET technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 5 纳米技术中实现 4.24-GHz 128×256 SRAM 双泵读写同周期运行
提出了一种高速高密度1R1W双端口32Kbit ($128\ × 256$)单端口6T位元宏SRAM。为了提高读写性能,提出了一种采用跟踪位线(TRKBL)旁路的RTW双泵CLK产生电路。在感应放大器中引入了局部联锁电路(LIC),以降低有功功率并进一步提高Fmax。为了减轻金属RC的退化,采用了双金属方案来提高信号的完整性和提高整体运行周期时间。结果表明,在5纳米FinFET技术中,慢角晶片能够在1.0 V/100°C下实现4.24 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
期刊最新文献
0.6-V, μW-Power Four-Stage OTA With Minimal Components, and 100× Load Range Broadband GaN MMIC Doherty Power Amplifier Using Compact Short-Circuited Coupler A 12 V Compliant Multichannel Dual Mode Neural Stimulator With 0.004% Charge Mismatch and a 4×VDD Tolerant On-Chip Discharge Switch in Low-Voltage CMOS A 14 nm MRAM-Based Multi-bit Analog In-Memory Computing With Process-Variation Calibration for 72 Macros-Based Accelerator S2D-CIM: SRAM-Based Systolic Digital Compute-in-Memory Framework With Domino Data Path Supporting Flexible Vector Operation and 2-D Weight Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1