Changliang Zhu, Xiangying Shen, Guimei Zhu, Baowen Li
{"title":"Prediction of Thermal Conductance of Complex Networks with Deep Learning","authors":"Changliang Zhu, Xiangying Shen, Guimei Zhu, Baowen Li","doi":"10.1088/0256-307x/40/12/124402","DOIUrl":null,"url":null,"abstract":"Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network structure and thermal conductance, encompassing connectivity, network topology, network geometry, node inhomogeneity, and others. Our understanding of how these parameters specifically influence heat transfer performance remains limited. Deep learning offers a promising approach for addressing such complex problems. We find that the well-established convolutional neural network models AlexNet can predict the thermal conductance of complex network efficiently. Our approach further optimizes the calculation efficiency by reducing the image recognition in consideration that the thermal transfer is inherently encoded within the Laplacian matrix. Intriguingly, our findings reveal that adopting a simpler convolutional neural network architecture can achieve a comparable prediction accuracy while requiring less computational time. This result facilitates a more efficient solution for predicting the thermal conductance of complex networks and serves as a reference for machine learning algorithm in related domains.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"29 4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/40/12/124402","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network structure and thermal conductance, encompassing connectivity, network topology, network geometry, node inhomogeneity, and others. Our understanding of how these parameters specifically influence heat transfer performance remains limited. Deep learning offers a promising approach for addressing such complex problems. We find that the well-established convolutional neural network models AlexNet can predict the thermal conductance of complex network efficiently. Our approach further optimizes the calculation efficiency by reducing the image recognition in consideration that the thermal transfer is inherently encoded within the Laplacian matrix. Intriguingly, our findings reveal that adopting a simpler convolutional neural network architecture can achieve a comparable prediction accuracy while requiring less computational time. This result facilitates a more efficient solution for predicting the thermal conductance of complex networks and serves as a reference for machine learning algorithm in related domains.
期刊介绍:
Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.