{"title":"Optimizing age-related hearing risk predictions: an advanced machine learning integration with HHIE-S","authors":"Tzong-Hann Yang, Yu-Fu Chen, Yen-Fu Cheng, Jue-Ni Huang, Chuan-Song Wu, Yuan-Chia Chu","doi":"10.1186/s13040-023-00351-z","DOIUrl":null,"url":null,"abstract":"The elderly are disproportionately affected by age-related hearing loss (ARHL). Despite being a well-known tool for ARHL evaluation, the Hearing Handicap Inventory for the Elderly Screening version (HHIE-S) has only traditionally been used for direct screening using self-reported outcomes. This work uses a novel integration of machine learning approaches to improve the predicted accuracy of the HHIE-S tool for ARHL in older adults. We employed a dataset that was gathered between 2016 and 2018 and included 1,526 senior citizens from several Taipei City Hospital branches. 80% of the data were used for training (n = 1220) and 20% were used for testing (n = 356). XGBoost, Gradient Boosting, and LightGBM were among the machine learning models that were only used and assessed on the training set. In order to prevent data leakage and overfitting, the Light Gradient Boosting Machine (LGBM) model—which had the greatest AUC of 0.83 (95% CI 0.81–0.85)—was then only used on the holdout testing data. On the testing set, the LGBM model showed a strong AUC of 0.82 (95% CI 0.79–0.86), far outperforming conventional techniques. Notably, several HHIE-S items and age were found to be significant characteristics. In contrast to traditional HHIE research, which concentrates on the psychological effects of hearing loss, this study combines cutting-edge machine learning techniques—specifically, the LGBM classifier—with the HHIE-S tool. The incorporation of SHAP values enhances the interpretability of the model's predictions and provides a more comprehensive comprehension of the significance of various aspects. Our methodology highlights the great potential that arises from combining machine learning with validated hearing evaluation instruments such as the HHIE-S. Healthcare practitioners can anticipate ARHL more accurately thanks to this integration, which makes it easier to intervene quickly and precisely.","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"33 4 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-023-00351-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The elderly are disproportionately affected by age-related hearing loss (ARHL). Despite being a well-known tool for ARHL evaluation, the Hearing Handicap Inventory for the Elderly Screening version (HHIE-S) has only traditionally been used for direct screening using self-reported outcomes. This work uses a novel integration of machine learning approaches to improve the predicted accuracy of the HHIE-S tool for ARHL in older adults. We employed a dataset that was gathered between 2016 and 2018 and included 1,526 senior citizens from several Taipei City Hospital branches. 80% of the data were used for training (n = 1220) and 20% were used for testing (n = 356). XGBoost, Gradient Boosting, and LightGBM were among the machine learning models that were only used and assessed on the training set. In order to prevent data leakage and overfitting, the Light Gradient Boosting Machine (LGBM) model—which had the greatest AUC of 0.83 (95% CI 0.81–0.85)—was then only used on the holdout testing data. On the testing set, the LGBM model showed a strong AUC of 0.82 (95% CI 0.79–0.86), far outperforming conventional techniques. Notably, several HHIE-S items and age were found to be significant characteristics. In contrast to traditional HHIE research, which concentrates on the psychological effects of hearing loss, this study combines cutting-edge machine learning techniques—specifically, the LGBM classifier—with the HHIE-S tool. The incorporation of SHAP values enhances the interpretability of the model's predictions and provides a more comprehensive comprehension of the significance of various aspects. Our methodology highlights the great potential that arises from combining machine learning with validated hearing evaluation instruments such as the HHIE-S. Healthcare practitioners can anticipate ARHL more accurately thanks to this integration, which makes it easier to intervene quickly and precisely.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.