Immune cell profiles and predictive modeling in osteoporotic vertebral fractures using XGBoost machine learning algorithms.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2025-02-04 DOI:10.1186/s13040-025-00427-y
Yi-Chou Chen, Hui-Chen Su, Shih-Ming Huang, Ching-Hsiao Yu, Jen-Huei Chang, Yi-Lin Chiu
{"title":"Immune cell profiles and predictive modeling in osteoporotic vertebral fractures using XGBoost machine learning algorithms.","authors":"Yi-Chou Chen, Hui-Chen Su, Shih-Ming Huang, Ching-Hsiao Yu, Jen-Huei Chang, Yi-Lin Chiu","doi":"10.1186/s13040-025-00427-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis significantly increases the risk of vertebral fractures, particularly among postmenopausal women, decreasing their quality of life. These fractures, often undiagnosed, can lead to severe health consequences and are influenced by bone mineral density and abnormal loads. Management strategies range from non-surgical interventions to surgical treatments. Moreover, the interaction between immune cells and bone cells plays a crucial role in bone repair processes, highlighting the importance of osteoimmunology in understanding and treating bone pathologies.</p><p><strong>Methods: </strong>This study aims to investigate the xCell signature-based immune cell profiles in osteoporotic patients with and without vertebral fractures, utilizing advanced predictive modeling through the XGBoost algorithm.</p><p><strong>Results: </strong>Our findings reveal an increased presence of CD4 + naïve T cells and central memory T cells in VF patients, indicating distinct adaptive immune responses. The XGBoost model identified Th1 cells, CD4 memory T cells, and hematopoietic stem cells as key predictors of VF. Notably, VF patients exhibited a reduction in Th1 cells and an enrichment of Th17 cells, which promote osteoclastogenesis and bone resorption. Gene expression analysis further highlighted an upregulation of osteoclast-related genes and a downregulation of osteoblast-related genes in VF patients, emphasizing the disrupted balance between bone formation and resorption. These findings underscore the critical role of immune cells in the pathogenesis of osteoporotic fractures and highlight the potential of XGBoost in identifying key biomarkers and therapeutic targets for mitigating fracture risk in osteoporotic patients.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"13"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00427-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoporosis significantly increases the risk of vertebral fractures, particularly among postmenopausal women, decreasing their quality of life. These fractures, often undiagnosed, can lead to severe health consequences and are influenced by bone mineral density and abnormal loads. Management strategies range from non-surgical interventions to surgical treatments. Moreover, the interaction between immune cells and bone cells plays a crucial role in bone repair processes, highlighting the importance of osteoimmunology in understanding and treating bone pathologies.

Methods: This study aims to investigate the xCell signature-based immune cell profiles in osteoporotic patients with and without vertebral fractures, utilizing advanced predictive modeling through the XGBoost algorithm.

Results: Our findings reveal an increased presence of CD4 + naïve T cells and central memory T cells in VF patients, indicating distinct adaptive immune responses. The XGBoost model identified Th1 cells, CD4 memory T cells, and hematopoietic stem cells as key predictors of VF. Notably, VF patients exhibited a reduction in Th1 cells and an enrichment of Th17 cells, which promote osteoclastogenesis and bone resorption. Gene expression analysis further highlighted an upregulation of osteoclast-related genes and a downregulation of osteoblast-related genes in VF patients, emphasizing the disrupted balance between bone formation and resorption. These findings underscore the critical role of immune cells in the pathogenesis of osteoporotic fractures and highlight the potential of XGBoost in identifying key biomarkers and therapeutic targets for mitigating fracture risk in osteoporotic patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 XGBoost 机器学习算法建立骨质疏松性脊椎骨折的免疫细胞图谱和预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
Immune cell profiles and predictive modeling in osteoporotic vertebral fractures using XGBoost machine learning algorithms. XGBoost-enhanced ensemble model using discriminative hybrid features for the prediction of sumoylation sites. A deep learning approach for classifying and predicting children's nutritional status in Ethiopia using LSTM-FC neural networks. MiCML: a causal machine learning cloud platform for the analysis of treatment effects using microbiome profiles. A generative deep neural network for pan-digestive tract cancer survival analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1