Donguk Choi, Kyungchan Hong, Munkhtuvshin Ochirbud, Didar Meiramov, Piti Sukontaskuul
{"title":"Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand","authors":"Donguk Choi, Kyungchan Hong, Munkhtuvshin Ochirbud, Didar Meiramov, Piti Sukontaskuul","doi":"10.1186/s40069-023-00631-2","DOIUrl":null,"url":null,"abstract":"<p>Use of high-cost raw materials such as quartz sand can limit wider application of ultra-high performance concrete in concrete construction. In this experimental study, recycled sand was used to fabricate ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC). Green UHPC with ordinary Portland cement and industrial by-products such as silica fume, fly ash, as well as recycled sand was first developed through two-step packing density tests to optimize the mix design. UHPFRC was then developed based on the UHPC mix designs and by using 1%, 2%, or 3% 13-mm straight steel fibers (SSF). The compressive strength, elastic modulus, and flexural tensile strength was 128 MPa, 46.9 GPa, and 11.9 MPa, respectively, after 28 days at water-to-binder ratio of 0.17 and with 2% SSFs. All high-performance concretes in this work utilized 100% commercially available recycled sand that was produced by wet processing method. Mechanical characteristics such as strength, elastic modulus, and density, absorption, and voids of the UHPC/UHPFRC were investigated. Development of autogenous shrinkage of UHPC/UHPFRC with recycled sand was monitored for 12 weeks, while mercury intrusion porosimetry test and scanning electron microscopy were performed for microstructural investigation. Finally, the environmental impacts and economical aspects of the green UHPC were evaluated by life cycle assessment (LCA) and cost analysis.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"9 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00631-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Use of high-cost raw materials such as quartz sand can limit wider application of ultra-high performance concrete in concrete construction. In this experimental study, recycled sand was used to fabricate ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC). Green UHPC with ordinary Portland cement and industrial by-products such as silica fume, fly ash, as well as recycled sand was first developed through two-step packing density tests to optimize the mix design. UHPFRC was then developed based on the UHPC mix designs and by using 1%, 2%, or 3% 13-mm straight steel fibers (SSF). The compressive strength, elastic modulus, and flexural tensile strength was 128 MPa, 46.9 GPa, and 11.9 MPa, respectively, after 28 days at water-to-binder ratio of 0.17 and with 2% SSFs. All high-performance concretes in this work utilized 100% commercially available recycled sand that was produced by wet processing method. Mechanical characteristics such as strength, elastic modulus, and density, absorption, and voids of the UHPC/UHPFRC were investigated. Development of autogenous shrinkage of UHPC/UHPFRC with recycled sand was monitored for 12 weeks, while mercury intrusion porosimetry test and scanning electron microscopy were performed for microstructural investigation. Finally, the environmental impacts and economical aspects of the green UHPC were evaluated by life cycle assessment (LCA) and cost analysis.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.