M. I. Kornilova, Yu. A. Khakhalev, V. N. Koval’nogov, A. V. Chukalin, E. V. Tsvetova
{"title":"Mathematical Modeling and Numerical Research of the Aerodynamic Wake Behind the Wind Turbine of the Ulyanovsk Wind Farm","authors":"M. I. Kornilova, Yu. A. Khakhalev, V. N. Koval’nogov, A. V. Chukalin, E. V. Tsvetova","doi":"10.1134/S0040601523120066","DOIUrl":null,"url":null,"abstract":"<p>The task of modeling the surface atmospheric boundary layer (ABL) in the wind turbine zone at the location of the Ulyanovsk wind farm is set. Reliable and accurate prediction of the evolution of ABL interacting with a wind farm over a wide range of spatial and temporal scales provides valuable quantitative information about its potential impact on the local meteorological situation and is of great importance for optimizing both the design (placement of turbines) and the operation of wind farms. The main problems of modeling and numerical investigation of the atmospheric boundary layer in combination with a wind turbine are considered. The main modeling problems include: multiscale, accounting for a highly rough inhomogeneous surface, wind irregularity in amplitude, direction and frequency, accounting for convection, solar radiation, stratification and phase transitions and precipitation, turbulence generation, and choice of modeling method and tool. The problem of multiscale research of the ABL-wind turbine system is considered and an overview of computational technologies for solving aerodynamic problems on the scale of one installation and wind farms is given. An analytical review of methods for modeling ABL and its interaction with a wind turbine is carried out. Approaches to the study of ABL based on systems of equations averaged by Reynolds, eddy-resolving models, and direct numerical modeling are considered; their advantages and limitations are given for solving the problem of studying the ABL–wind generator system. The mathematical model of the ABL–wind turbine system is described. The results of mathematical modeling and numerical study of the aerodynamics of the ABL–wind turbine system of the Ulyanovsk wind farm are presented, and numerical data on the attenuation of the aerodynamic wake behind the wind turbine and the restoration of the velocity profile, as well as on the friction resistance on the surface of the wind turbine blade, are obtained and analyzed. The analysis of the results of mathematical modeling of ABL in the wind turbine zone is carried out.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"70 12","pages":"1062 - 1072"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601523120066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The task of modeling the surface atmospheric boundary layer (ABL) in the wind turbine zone at the location of the Ulyanovsk wind farm is set. Reliable and accurate prediction of the evolution of ABL interacting with a wind farm over a wide range of spatial and temporal scales provides valuable quantitative information about its potential impact on the local meteorological situation and is of great importance for optimizing both the design (placement of turbines) and the operation of wind farms. The main problems of modeling and numerical investigation of the atmospheric boundary layer in combination with a wind turbine are considered. The main modeling problems include: multiscale, accounting for a highly rough inhomogeneous surface, wind irregularity in amplitude, direction and frequency, accounting for convection, solar radiation, stratification and phase transitions and precipitation, turbulence generation, and choice of modeling method and tool. The problem of multiscale research of the ABL-wind turbine system is considered and an overview of computational technologies for solving aerodynamic problems on the scale of one installation and wind farms is given. An analytical review of methods for modeling ABL and its interaction with a wind turbine is carried out. Approaches to the study of ABL based on systems of equations averaged by Reynolds, eddy-resolving models, and direct numerical modeling are considered; their advantages and limitations are given for solving the problem of studying the ABL–wind generator system. The mathematical model of the ABL–wind turbine system is described. The results of mathematical modeling and numerical study of the aerodynamics of the ABL–wind turbine system of the Ulyanovsk wind farm are presented, and numerical data on the attenuation of the aerodynamic wake behind the wind turbine and the restoration of the velocity profile, as well as on the friction resistance on the surface of the wind turbine blade, are obtained and analyzed. The analysis of the results of mathematical modeling of ABL in the wind turbine zone is carried out.