An evolutionary algorithm for the direct optimization of covariate balance between nonrandomized populations.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-05-01 Epub Date: 2023-12-18 DOI:10.1002/pst.2352
Stephen Privitera, Hooman Sedghamiz, Alexander Hartenstein, Tatsiana Vaitsiakhovich, Frank Kleinjung
{"title":"An evolutionary algorithm for the direct optimization of covariate balance between nonrandomized populations.","authors":"Stephen Privitera, Hooman Sedghamiz, Alexander Hartenstein, Tatsiana Vaitsiakhovich, Frank Kleinjung","doi":"10.1002/pst.2352","DOIUrl":null,"url":null,"abstract":"<p><p>Matching reduces confounding bias in comparing the outcomes of nonrandomized patient populations by removing systematic differences between them. Under very basic assumptions, propensity score (PS) matching can be shown to eliminate bias entirely in estimating the average treatment effect on the treated. In practice, misspecification of the PS model leads to deviations from theory and matching quality is ultimately judged by the observed post-matching balance in baseline covariates. Since covariate balance is the ultimate arbiter of successful matching, we argue for an approach to matching in which the success criterion is explicitly specified and describe an evolutionary algorithm to directly optimize an arbitrary metric of covariate balance. We demonstrate the performance of the proposed method using a simulated dataset of 275,000 patients and 10 matching covariates. We further apply the method to match 250 patients from a recently completed clinical trial to a pool of more than 160,000 patients identified from electronic health records on 101 covariates. In all cases, we find that the proposed method outperforms PS matching as measured by the specified balance criterion. We additionally find that the evolutionary approach can perform comparably to another popular direct optimization technique based on linear integer programming, while having the additional advantage of supporting arbitrary balance metrics. We demonstrate how the chosen balance metric impacts the statistical properties of the resulting matched populations, emphasizing the potential impact of using nonlinear balance functions in constructing an external control arm. We release our implementation of the considered algorithms in Python.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"288-307"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2352","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Matching reduces confounding bias in comparing the outcomes of nonrandomized patient populations by removing systematic differences between them. Under very basic assumptions, propensity score (PS) matching can be shown to eliminate bias entirely in estimating the average treatment effect on the treated. In practice, misspecification of the PS model leads to deviations from theory and matching quality is ultimately judged by the observed post-matching balance in baseline covariates. Since covariate balance is the ultimate arbiter of successful matching, we argue for an approach to matching in which the success criterion is explicitly specified and describe an evolutionary algorithm to directly optimize an arbitrary metric of covariate balance. We demonstrate the performance of the proposed method using a simulated dataset of 275,000 patients and 10 matching covariates. We further apply the method to match 250 patients from a recently completed clinical trial to a pool of more than 160,000 patients identified from electronic health records on 101 covariates. In all cases, we find that the proposed method outperforms PS matching as measured by the specified balance criterion. We additionally find that the evolutionary approach can perform comparably to another popular direct optimization technique based on linear integer programming, while having the additional advantage of supporting arbitrary balance metrics. We demonstrate how the chosen balance metric impacts the statistical properties of the resulting matched populations, emphasizing the potential impact of using nonlinear balance functions in constructing an external control arm. We release our implementation of the considered algorithms in Python.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种直接优化非随机种群间协变量平衡的进化算法。
匹配通过消除非随机病人群体之间的系统性差异,减少了在比较非随机病人群体结果时的混杂偏差。在非常基本的假设条件下,可以证明倾向评分(PS)匹配在估计平均治疗效果时可以完全消除偏差。在实践中,倾向评分模型的不规范会导致与理论的偏差,匹配质量最终要通过观察到的匹配后基线协变量的平衡来判断。由于协变量平衡是配对成功与否的最终判定标准,我们主张采用一种明确指定成功标准的配对方法,并描述了一种直接优化任意协变量平衡度量的进化算法。我们使用一个包含 275,000 名患者和 10 个匹配协变量的模拟数据集演示了所提方法的性能。我们还进一步应用该方法,将最近完成的一项临床试验中的 250 名患者与从电子健康记录中确定的 160,000 多名患者的 101 个协变量进行匹配。我们发现,在所有情况下,按照指定的平衡标准衡量,所提出的方法都优于 PS 匹配方法。我们还发现,进化方法的性能可与另一种流行的基于线性整数编程的直接优化技术相媲美,同时还具有支持任意平衡指标的额外优势。我们展示了所选平衡度量如何影响所产生匹配种群的统计特性,强调了在构建外部控制臂时使用非线性平衡函数的潜在影响。我们发布了所考虑算法的 Python 实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Bayesian Solutions for Assessing Differential Effects in Biomarker Positive and Negative Subgroups. Pre-Posterior Distributions in Drug Development and Their Properties. Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1