Collective dynamics and long-range order in thermal neuristor networks

Yuan-Hang Zhang, Chesson Sipling, Erbin Qiu, Ivan K. Schuller, Massimiliano Di Ventra
{"title":"Collective dynamics and long-range order in thermal neuristor networks","authors":"Yuan-Hang Zhang, Chesson Sipling, Erbin Qiu, Ivan K. Schuller, Massimiliano Di Ventra","doi":"arxiv-2312.12899","DOIUrl":null,"url":null,"abstract":"In the pursuit of scalable and energy-efficient neuromorphic devices, recent\nresearch has unveiled a novel category of spiking oscillators, termed ``thermal\nneuristors.\" These devices function via thermal interactions among neighboring\nvanadium dioxide resistive memories, closely mimicking the behavior of\nbiological neurons. Here, we show that the collective dynamical behavior of\nnetworks of these neurons showcases a rich phase structure, tunable by\nadjusting the thermal coupling and input voltage. Notably, we have identified\nphases exhibiting long-range order that, however, does not arise from\ncriticality, but rather from the time non-local response of the system. In\naddition, we show that these thermal neuristor arrays achieve high accuracy in\nimage recognition tasks through reservoir computing, without taking advantage\nof this long-range order. Our findings highlight a crucial aspect of\nneuromorphic computing with possible implications on the functioning of the\nbrain: criticality may not be necessary for the efficient performance of\nneuromorphic systems in certain computational tasks.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of scalable and energy-efficient neuromorphic devices, recent research has unveiled a novel category of spiking oscillators, termed ``thermal neuristors." These devices function via thermal interactions among neighboring vanadium dioxide resistive memories, closely mimicking the behavior of biological neurons. Here, we show that the collective dynamical behavior of networks of these neurons showcases a rich phase structure, tunable by adjusting the thermal coupling and input voltage. Notably, we have identified phases exhibiting long-range order that, however, does not arise from criticality, but rather from the time non-local response of the system. In addition, we show that these thermal neuristor arrays achieve high accuracy in image recognition tasks through reservoir computing, without taking advantage of this long-range order. Our findings highlight a crucial aspect of neuromorphic computing with possible implications on the functioning of the brain: criticality may not be necessary for the efficient performance of neuromorphic systems in certain computational tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热神经元网络中的集体动力学和长程秩序
为了追求可扩展和高能效的神经形态设备,最近的研究揭示了一种新型尖峰振荡器,称为 "热神经元"。这些器件通过相邻二氧化钒电阻存储器之间的热相互作用发挥作用,近似模仿生物神经元的行为。在这里,我们展示了这些神经元网络的集体动力学行为展现了丰富的相位结构,可通过调整热耦合和输入电压进行调谐。值得注意的是,我们发现了表现出长程有序性的相位,但这种有序性并非源于临界性,而是源于系统的时间非局部响应。此外,我们还表明,这些热神经元阵列通过蓄水池计算在图像识别任务中实现了高准确度,而没有利用这种长程有序。我们的发现凸显了超形态计算的一个重要方面,可能会对大脑的功能产生影响:在某些计算任务中,临界性可能并不是超形态系统高效执行任务的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1