Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach

Jan Kobiolka, Jens Habermann, Marius E. Yamakou
{"title":"Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach","authors":"Jan Kobiolka, Jens Habermann, Marius E. Yamakou","doi":"arxiv-2408.16155","DOIUrl":null,"url":null,"abstract":"In this paper, we address the reduced-order synchronization problem between\ntwo chaotic memristive Hindmarsh-Rose (HR) neurons of different orders using\ntwo distinct methods. The first method employs the Lyapunov active control\ntechnique. Through this technique, we develop appropriate control functions to\nsynchronize a 4D chaotic HR neuron (response system) with the canonical\nprojection of a 5D chaotic HR neuron (drive system). Numerical simulations are\nprovided to demonstrate the effectiveness of this approach. The second method\nis data-driven and leverages a machine learning-based control technique. Our\ntechnique utilizes an ad hoc combination of reservoir computing (RC)\nalgorithms, incorporating reservoir observer (RO), online control (OC), and\nonline predictive control (OPC) algorithms. We anticipate our effective\nheuristic RC adaptive control algorithm to guide the development of more\nformally structured and systematic, data-driven RC control approaches to\nchaotic synchronization problems, and to inspire more data-driven neuromorphic\nmethods for controlling and achieving synchronization in chaotic neural\nnetworks in vivo.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the reduced-order synchronization problem between two chaotic memristive Hindmarsh-Rose (HR) neurons of different orders using two distinct methods. The first method employs the Lyapunov active control technique. Through this technique, we develop appropriate control functions to synchronize a 4D chaotic HR neuron (response system) with the canonical projection of a 5D chaotic HR neuron (drive system). Numerical simulations are provided to demonstrate the effectiveness of this approach. The second method is data-driven and leverages a machine learning-based control technique. Our technique utilizes an ad hoc combination of reservoir computing (RC) algorithms, incorporating reservoir observer (RO), online control (OC), and online predictive control (OPC) algorithms. We anticipate our effective heuristic RC adaptive control algorithm to guide the development of more formally structured and systematic, data-driven RC control approaches to chaotic synchronization problems, and to inspire more data-driven neuromorphic methods for controlling and achieving synchronization in chaotic neural networks in vivo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数失配混沌神经网络中的低阶自适应同步:动力系统与机器学习方法
在本文中,我们使用两种不同的方法来解决两个不同阶的混沌记忆型兴马什-罗斯(HR)神经元之间的降阶同步问题。第一种方法采用了 Lyapunov 主动控制技术。通过这种技术,我们开发了适当的控制函数,使4维混沌HR神经元(响应系统)与5维混沌HR神经元(驱动系统)的典型投影同步。数值模拟证明了这种方法的有效性。第二种方法以数据为驱动,利用基于机器学习的控制技术。我们的技术利用了水库计算(RC)算法的特别组合,其中包含水库观测器(RO)、在线控制(OC)和在线预测控制(OPC)算法。我们预计,我们有效的启发式 RC 自适应控制算法将指导针对混沌同步问题的更正规结构化和系统化、数据驱动的 RC 控制方法的开发,并启发更多数据驱动的神经形态方法来控制和实现体内混沌神经网络的同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1