Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2023-12-19 DOI:10.1093/nsr/nwad321
Bina Fu, Dong H Zhang
{"title":"Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces","authors":"Bina Fu, Dong H Zhang","doi":"10.1093/nsr/nwad321","DOIUrl":null,"url":null,"abstract":"Highly accurate potential energy surfaces are critically important for chemical reaction dynamics. The large number of degrees of freedom and the intricate symmetry adaption pose a big challenge to accurately representing potential energy surfaces (PESs) for polyatomic reactions. Recently, our group has made substantial progress in this direction by developing the fundamental invariant-neural network (FI-NN) approach. Here, we review these advances, demonstrating that the FI-NN approach can represent highly accurate, global, full-dimensional PESs for reactive systems with even more than 10 atoms. These multi-channel reactions typically involve many intermediates, transition states, and products. The complexity and ruggedness of this potential energy landscape present even greater challenges for full-dimensional PES representation. These PESs exhibit a high level of complexity, molecular size, and accuracy of fit. Dynamics simulations based on these PESs have unveiled intriguing and novel reaction mechanisms, providing deep insights into the intricate dynamics in combustion, atmospheric, and organic chemistry.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwad321","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Highly accurate potential energy surfaces are critically important for chemical reaction dynamics. The large number of degrees of freedom and the intricate symmetry adaption pose a big challenge to accurately representing potential energy surfaces (PESs) for polyatomic reactions. Recently, our group has made substantial progress in this direction by developing the fundamental invariant-neural network (FI-NN) approach. Here, we review these advances, demonstrating that the FI-NN approach can represent highly accurate, global, full-dimensional PESs for reactive systems with even more than 10 atoms. These multi-channel reactions typically involve many intermediates, transition states, and products. The complexity and ruggedness of this potential energy landscape present even greater challenges for full-dimensional PES representation. These PESs exhibit a high level of complexity, molecular size, and accuracy of fit. Dynamics simulations based on these PESs have unveiled intriguing and novel reaction mechanisms, providing deep insights into the intricate dynamics in combustion, atmospheric, and organic chemistry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ab initio势能面的精确基本无变量神经网络表示法
高精度势能面对化学反应动力学至关重要。大量的自由度和错综复杂的对称性适应性对精确表示多原子反应的势能面(PES)构成了巨大挑战。最近,我们的研究小组通过开发基本无变量神经网络(FI-NN)方法,在这一方向上取得了实质性进展。在此,我们回顾了这些进展,证明 FI-NN 方法可以为原子数甚至超过 10 个的反应体系表示高精度、全局、全维的 PES。这些多通道反应通常涉及许多中间体、过渡态和产物。这种势能图的复杂性和崎岖性给全维 PES 表征带来了更大的挑战。这些 PES 在复杂性、分子大小和拟合精度方面都表现出很高的水平。基于这些 PES 的动力学模拟揭示了有趣而新颖的反应机制,为燃烧、大气和有机化学中错综复杂的动力学提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
Origin of sulfate in post-snowball-Earth oceans: river inputs vs. shelf-derived H2S. Contribution of irrigation to the production of maize, wheat, and rice in the major global producing countries. Fossil evidence for silica biomineralization in Permian lycophytes. Shaping the future of fiber technology: exploring functional and smart innovations. The search for life signatures on Mars by the Tianwen-3 Mars sample return mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1