{"title":"Single cobalt atoms with unconventional dynamic coordination mechanism for selective ammonia sensor.","authors":"Yuejiao Li, Yaguang Li, Yushu Shi, Jianmei Gao, Jianmin Lu, Chao Wang, Junyu Chang, Zhenming Wang, Yangyue Yang, Bing Yang, Liang Feng, Qiang Fu, Xinhe Bao, Zhong-Shuai Wu","doi":"10.1093/nsr/nwaf031","DOIUrl":null,"url":null,"abstract":"<p><p>Developing gas sensors that can simultaneously achieve high sensitivity and selectivity for the detection of a single-type gas remains a significant challenge. Herein we demonstrate cobalt (Co) single atoms with an unconventional dynamically changing coordination structure that could be used as NH<sub>3</sub>-sensing material with superior sensitivity and selectivity. According to the steric effect of 2-methylimidazole (2MI) molecules and carbonyl groups on graphene, the Co single atom is evolved into a bidentate coordinated structure (Co-2MI-G). <i>In-situ</i> characterization and theoretical simulation reveal that the sensing mechanism of Co-2MI-G is the specific chemical adsorption between unsaturated coordinated Co single atoms and NH<sub>3</sub> molecules, causing a reversible switching of coordination number from 2 to 4, a valence state transfer from Co<sup>2+</sup> to Co<sup>3+</sup> of Co single atoms, and a band-gap width from 0.14 eV to 0.50 eV. Consequently, the Co-2MI-G-based gas sensor presents a sensing response of 67.598% for 1 ppm NH<sub>3</sub> and a limit of detection of 2.67 ppb, at least 1.8 times higher than that of state-of-the-art NH<sub>3</sub> sensors, together with robust stability and reproducibility. This work provides an innovative perspective on utilizing single atoms for ultra-selective gas sensing by coordination regulation.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 3","pages":"nwaf031"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf031","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing gas sensors that can simultaneously achieve high sensitivity and selectivity for the detection of a single-type gas remains a significant challenge. Herein we demonstrate cobalt (Co) single atoms with an unconventional dynamically changing coordination structure that could be used as NH3-sensing material with superior sensitivity and selectivity. According to the steric effect of 2-methylimidazole (2MI) molecules and carbonyl groups on graphene, the Co single atom is evolved into a bidentate coordinated structure (Co-2MI-G). In-situ characterization and theoretical simulation reveal that the sensing mechanism of Co-2MI-G is the specific chemical adsorption between unsaturated coordinated Co single atoms and NH3 molecules, causing a reversible switching of coordination number from 2 to 4, a valence state transfer from Co2+ to Co3+ of Co single atoms, and a band-gap width from 0.14 eV to 0.50 eV. Consequently, the Co-2MI-G-based gas sensor presents a sensing response of 67.598% for 1 ppm NH3 and a limit of detection of 2.67 ppb, at least 1.8 times higher than that of state-of-the-art NH3 sensors, together with robust stability and reproducibility. This work provides an innovative perspective on utilizing single atoms for ultra-selective gas sensing by coordination regulation.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.