Sulaiman, Hossam S. EL-BELTAGI, W. F. Shehata, Aziz AHMAD, M. F. Hassim, Maha L. Hadid
{"title":"Role of silica nanoparticles in enhancing drought tolerance of cereal crops","authors":"Sulaiman, Hossam S. EL-BELTAGI, W. F. Shehata, Aziz AHMAD, M. F. Hassim, Maha L. Hadid","doi":"10.15835/nbha51413480","DOIUrl":null,"url":null,"abstract":"Cereal crops are essential for providing essential nutrients and energy in the daily human diet. Additionally, they have a crucial role as a significant constituent of cattle feed, hence enhancing meat production. Drought, being an abiotic stressor, adversely affects the growth and yield of numerous crops on a global scale. This issue poses a significant and pressing obstacle to maintaining global cereal crop production and ensuring food security. Nanoparticles have become a valuable resource for improving cereal crop yield and productivity under ongoing rapid climate change and escalating drought conditions. Among these, silica nanoparticles (SiNPs) have demonstrated their potential for agricultural applications in regions with limited water availability. Drought stress has detrimental effects on cereal crops, impacting their growth, metabolic, and physiological processes, hampering water and nutrient absorption, disrupting cellular membranes, damaging the photosynthetic apparatus, and reducing antioxidant activities by altering gene expression. SiNPs help preserve cellular membranes, regulate water balance, and improve water and nutrient absorption, resulting in a substantial enhancement in plant growth under water-deficit conditions. SiNPs also protect the photosynthetic system and enhance its efficiency, facilitate the accumulation of phenolics, hormones, osmolytes, antioxidant activities, and gene expression, thus empowering plants with increased resistance to drought stress. Moreover, SiNPs decrease leaf water loss by promoting stomatal closure, primarily by fostering the accumulation of abscisic acid (ABA) and mitigating oxidative stress damage by activating the antioxidant defence system and reducing reactive oxygen species (ROS). However, a limited number of studies examine the role of SiNPs in cereal crops under drought stress conditions. In this review, we highlighted the promising potential of SiNPs to improve cereal crop resilience by changing morpho-histological traits, antioxidant properties, and gene expression to maintain food security in drought-prone areas. This study will aid researchers in using SiNPs as an environmentally benign way to improving drought resistance in cereal crops in order to fulfill global food supply needs.","PeriodicalId":19364,"journal":{"name":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15835/nbha51413480","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cereal crops are essential for providing essential nutrients and energy in the daily human diet. Additionally, they have a crucial role as a significant constituent of cattle feed, hence enhancing meat production. Drought, being an abiotic stressor, adversely affects the growth and yield of numerous crops on a global scale. This issue poses a significant and pressing obstacle to maintaining global cereal crop production and ensuring food security. Nanoparticles have become a valuable resource for improving cereal crop yield and productivity under ongoing rapid climate change and escalating drought conditions. Among these, silica nanoparticles (SiNPs) have demonstrated their potential for agricultural applications in regions with limited water availability. Drought stress has detrimental effects on cereal crops, impacting their growth, metabolic, and physiological processes, hampering water and nutrient absorption, disrupting cellular membranes, damaging the photosynthetic apparatus, and reducing antioxidant activities by altering gene expression. SiNPs help preserve cellular membranes, regulate water balance, and improve water and nutrient absorption, resulting in a substantial enhancement in plant growth under water-deficit conditions. SiNPs also protect the photosynthetic system and enhance its efficiency, facilitate the accumulation of phenolics, hormones, osmolytes, antioxidant activities, and gene expression, thus empowering plants with increased resistance to drought stress. Moreover, SiNPs decrease leaf water loss by promoting stomatal closure, primarily by fostering the accumulation of abscisic acid (ABA) and mitigating oxidative stress damage by activating the antioxidant defence system and reducing reactive oxygen species (ROS). However, a limited number of studies examine the role of SiNPs in cereal crops under drought stress conditions. In this review, we highlighted the promising potential of SiNPs to improve cereal crop resilience by changing morpho-histological traits, antioxidant properties, and gene expression to maintain food security in drought-prone areas. This study will aid researchers in using SiNPs as an environmentally benign way to improving drought resistance in cereal crops in order to fulfill global food supply needs.
期刊介绍:
Notulae Botanicae Horti Agrobotanici Cluj-Napoca is a peer-reviewed biannual journal aimed at disseminating significant research and original papers, critical reviews and short reviews. The subjects refer on plant biodiversity, genetics and plant breeding, development of new methodologies that can be of interest to a wide audience of plant scientists in all areas of plant biology, agriculture, horticulture and forestry. The journal encourages authors to frame their research questions and discuss their results in terms of the major questions of plant sciences, thereby maximizing the impact and value of their research, and thus in favor of spreading their studies outcome. The papers must be of potential interest to a significant number of scientists and, if specific to a local situation, must be relevant to a wide body of knowledge in life sciences. Articles should make a significant contribution to the advancement of knowledge or toward a better understanding of existing biological and agricultural concepts. An international Editorial Board advises the journal. The total content of the journal may be used for educational, non-profit purposes without regard to copyright. The distribution of the material is encouraged with the condition that the authors and the source (Notulae Botanicae Horti Agrobotanici Cluj-Napoca or JCR abbrev. title Not Bot Horti Agrobo) are mentioned.