{"title":"Effect of Stir Casting Process Parameters and Stirrer Blade Geometry on Mechanical Properties of Al MMCs – A Review","authors":"Ch. Morsiya, Pandya","doi":"10.24425/amm.2023.146214","DOIUrl":null,"url":null,"abstract":"aluminium matrix composites offer a combination of properties such as lower weight, higher strength, higher wear resistance and many more. The stir casting process is easy to use, involves low cost and is suitable for mass production compared to other manufacturing processes. an in-depth look at recently manufactured aluminium matrix composites and their impact on particle distribution, porosity, wettability, microstructure and mechanical properties of al matrix composites have all been studied in relation to stirring parameters. several significant concerns have been raised about the sample’s poor wettability, porosity and particle distribution. Mechanical, thermal, and tribological properties are frequently studied in conjunction with variations in reinforcement proportion but few studies on the effect of stirrer blade design and parameters such as stirrer shape, dimensions and position have been reported. To study the effect of stirrer blade design on particle distribution, computational fluid dynamics is used by researchers. reported multiphysics models were k - ε model and the k - ω model for simulation. it is necessary to analyse these models to determine which one best solves the real-time problem. stirrer design selection and analysis of its effect on particle distribution using simulation, while taking underlying physics into account, can be well-thought-out as a future area of research in the widely adopted stir casting field.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":"116 36","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2023.146214","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
aluminium matrix composites offer a combination of properties such as lower weight, higher strength, higher wear resistance and many more. The stir casting process is easy to use, involves low cost and is suitable for mass production compared to other manufacturing processes. an in-depth look at recently manufactured aluminium matrix composites and their impact on particle distribution, porosity, wettability, microstructure and mechanical properties of al matrix composites have all been studied in relation to stirring parameters. several significant concerns have been raised about the sample’s poor wettability, porosity and particle distribution. Mechanical, thermal, and tribological properties are frequently studied in conjunction with variations in reinforcement proportion but few studies on the effect of stirrer blade design and parameters such as stirrer shape, dimensions and position have been reported. To study the effect of stirrer blade design on particle distribution, computational fluid dynamics is used by researchers. reported multiphysics models were k - ε model and the k - ω model for simulation. it is necessary to analyse these models to determine which one best solves the real-time problem. stirrer design selection and analysis of its effect on particle distribution using simulation, while taking underlying physics into account, can be well-thought-out as a future area of research in the widely adopted stir casting field.
铝基复合材料具有重量轻、强度高、耐磨性强等多种特性。与其他制造工艺相比,搅拌铸造工艺易于使用,成本低,适合大规模生产。对最近制造的铝基复合材料及其对颗粒分布、孔隙率、润湿性、微观结构和机械性能的影响进行了深入研究,这些都与搅拌参数有关。机械、热和摩擦学特性经常与增强比例的变化结合在一起进行研究,但有关搅拌器叶片设计和搅拌器形状、尺寸和位置等参数的影响的研究报道却很少。为了研究搅拌器叶片设计对颗粒分布的影响,研究人员使用了计算流体动力学。已报道的多物理场模型有 k - ε 模型和用于模拟的 k - ω 模型。有必要对这些模型进行分析,以确定哪种模型最能解决实时问题。
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.