{"title":"Research on Formability of 304 Stainless Steel Foil Micro-Deep Drawing","authors":"Y. Xing, P. Han, X. Wang","doi":"10.24425/amm.2023.146192","DOIUrl":null,"url":null,"abstract":"The 0.05 mm-thick 304 stainless steel foil was annealed within the temperature range from 950℃-1100℃ for 10 minutes to obtain different microstructures. and micro-deep drawing experiments of stainless steel foils with different tissue structures were conducted to obtain relevant material forming properties influenced by dimensional effects. On this basis, the influence of the microstructure characteristics on the forming performance of 304 stainless steel foil and the quality of the cup formed by using micro-drawing was studied, and its mechanism was discussed. it can be seen from the results that the stainless steel foil annealed at 950℃ exhibits poor forming performance, and the wrinkle phenomenon of the deep-drawn cup is obvious. At the annealing temperature of 1050℃, the quality of the deep drawing cup is significantly improved. When the annealing temperature reaches 1100℃, with the increase of the annealing temperature, the crystal grains size increase sharply, and the coarse-grain effect causes the uneven plastic deformation effect to be obvious. Besides, the drawing quality is obviously deteriorated. The observation of the microstructure of the deep drawing cup shows that the forming effect of the drawing cup is poor due to the rolling defects and the coarse grain effect. The 304 stainless steel drawing cup annealed at 1050℃ enjoys the best forming effect.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":"119 11","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2023.146192","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The 0.05 mm-thick 304 stainless steel foil was annealed within the temperature range from 950℃-1100℃ for 10 minutes to obtain different microstructures. and micro-deep drawing experiments of stainless steel foils with different tissue structures were conducted to obtain relevant material forming properties influenced by dimensional effects. On this basis, the influence of the microstructure characteristics on the forming performance of 304 stainless steel foil and the quality of the cup formed by using micro-drawing was studied, and its mechanism was discussed. it can be seen from the results that the stainless steel foil annealed at 950℃ exhibits poor forming performance, and the wrinkle phenomenon of the deep-drawn cup is obvious. At the annealing temperature of 1050℃, the quality of the deep drawing cup is significantly improved. When the annealing temperature reaches 1100℃, with the increase of the annealing temperature, the crystal grains size increase sharply, and the coarse-grain effect causes the uneven plastic deformation effect to be obvious. Besides, the drawing quality is obviously deteriorated. The observation of the microstructure of the deep drawing cup shows that the forming effect of the drawing cup is poor due to the rolling defects and the coarse grain effect. The 304 stainless steel drawing cup annealed at 1050℃ enjoys the best forming effect.
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.