Can machine learning algorithms deliver superior models for rental guides?

Oliver Trinkaus, Göran Kauermann
{"title":"Can machine learning algorithms deliver superior models for rental guides?","authors":"Oliver Trinkaus,&nbsp;Göran Kauermann","doi":"10.1007/s11943-023-00333-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we discuss the use and potential advantages and disadvantages of machine learning driven models in rental guides. Rental guides are a formal legal instrument in Germany for surveying rents of flats in cities and municipalities, which are today based on regression models or simple contingency tables. We discuss if and how modern and timely methods of machine learning outperform existing and established routines. We make use of data from the Munich rental guide and mainly focus on the predictive power of these models. We discuss the “black-box” character making some of these models difficult to interpret and hence challenging for applications in the rental guide context. Still, it is of interest to see how “black-box” models perform with respect to prediction error. Moreover, we study adversarial effects, i.e. we investigate robustness in the sense how corrupted data influence the performance of the prediction models. With the data at hand we show that models with promising predictive performance suffer from being more vulnerable to corruptions than classic linear models including Ridge or Lasso regularization.</p></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"17 3-4","pages":"305 - 330"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11943-023-00333-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-023-00333-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we discuss the use and potential advantages and disadvantages of machine learning driven models in rental guides. Rental guides are a formal legal instrument in Germany for surveying rents of flats in cities and municipalities, which are today based on regression models or simple contingency tables. We discuss if and how modern and timely methods of machine learning outperform existing and established routines. We make use of data from the Munich rental guide and mainly focus on the predictive power of these models. We discuss the “black-box” character making some of these models difficult to interpret and hence challenging for applications in the rental guide context. Still, it is of interest to see how “black-box” models perform with respect to prediction error. Moreover, we study adversarial effects, i.e. we investigate robustness in the sense how corrupted data influence the performance of the prediction models. With the data at hand we show that models with promising predictive performance suffer from being more vulnerable to corruptions than classic linear models including Ridge or Lasso regularization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法能否为租赁指南提供卓越的模型?
本文将讨论机器学习驱动模型在租金指南中的应用和潜在优缺点。租金指南是德国调查城市和市政单位租金的正式法律文书,目前基于回归模型或简单的或然率表。我们将讨论现代和及时的机器学习方法是否以及如何优于现有的常规方法。我们利用慕尼黑租金指南中的数据,主要关注这些模型的预测能力。我们讨论了 "黑箱 "特性,这种特性使得其中一些模型难以解释,因此在租赁指南中的应用具有挑战性。不过,我们还是有兴趣了解 "黑箱 "模型在预测误差方面的表现。此外,我们还研究了对抗效应,即从损坏数据如何影响预测模型性能的角度来研究鲁棒性。我们利用手头的数据表明,与包括 Ridge 或 Lasso 正则化在内的经典线性模型相比,具有良好预测性能的模型更容易受到干扰的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vorwort der Herausgeber Connecting algorithmic fairness to quality dimensions in machine learning in official statistics and survey production Automated Bayesian variable selection methods for binary regression models with missing covariate data Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln Interview mit Walter Krämer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1