Biological synthesis and characterization of antibacterial manganese oxide nanoparticles using Bacillus subtilis ATCC6633

Abdallah El-Zahed, Mahmoud Khalifa, M. El-Zahed, Z. Baka
{"title":"Biological synthesis and characterization of antibacterial manganese oxide nanoparticles using Bacillus subtilis ATCC6633","authors":"Abdallah El-Zahed, Mahmoud Khalifa, M. El-Zahed, Z. Baka","doi":"10.21608/sjdfs.2023.242279.1136","DOIUrl":null,"url":null,"abstract":"Green synthesis sources for synthesizing metal oxide nanoparticles are an interesting and expanding research area due to their potential antibacterial applications. Generally, nanoparticles are prepared using different chemical and physical methods that yield toxic or harmful nano-scaled particles in addition to the high cost and complicated processing steps. The present study successfully biosynthesized manganese oxide nanoparticles (MnO NPs) by reducing Manganese sulfate ( MnSO 4 .H 2 O) using the cell-free supernatant of Bacillus subtilis ATCC6633. The formation of MnO NPs was confirmed by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Zeta analysis and transmission electron microscope (TEM). The biosynthesized MnO NPs displayed two absorption peaks at 285 and 353 nm. FT-IR spectrum proved the existence of bacterial proteins during the biosynthesis of MnO NPs that might act as stabilizing agents. MnO NPs have a negative charge of -20.4 mV according to Zeta analysis. TEM micrographs showed the rod-shape of MnO NPs with lengths of 70 to 100 nm and diameters of 10 to 23 nm. MnO NPs had a bactericidal action against Bacillus cereus and Escherichia coli with zones of inhibition of 23 and 25 mm, respectively in addition to minimum inhibitory concentration values of 20 and 15 µg/ml, respectively. The obtained results highlighted the possibility of using MnO NPs as a strong antibacterial agent in different industrial and medical applications.","PeriodicalId":21655,"journal":{"name":"Scientific Journal for Damietta Faculty of Science","volume":"205 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal for Damietta Faculty of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/sjdfs.2023.242279.1136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green synthesis sources for synthesizing metal oxide nanoparticles are an interesting and expanding research area due to their potential antibacterial applications. Generally, nanoparticles are prepared using different chemical and physical methods that yield toxic or harmful nano-scaled particles in addition to the high cost and complicated processing steps. The present study successfully biosynthesized manganese oxide nanoparticles (MnO NPs) by reducing Manganese sulfate ( MnSO 4 .H 2 O) using the cell-free supernatant of Bacillus subtilis ATCC6633. The formation of MnO NPs was confirmed by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Zeta analysis and transmission electron microscope (TEM). The biosynthesized MnO NPs displayed two absorption peaks at 285 and 353 nm. FT-IR spectrum proved the existence of bacterial proteins during the biosynthesis of MnO NPs that might act as stabilizing agents. MnO NPs have a negative charge of -20.4 mV according to Zeta analysis. TEM micrographs showed the rod-shape of MnO NPs with lengths of 70 to 100 nm and diameters of 10 to 23 nm. MnO NPs had a bactericidal action against Bacillus cereus and Escherichia coli with zones of inhibition of 23 and 25 mm, respectively in addition to minimum inhibitory concentration values of 20 and 15 µg/ml, respectively. The obtained results highlighted the possibility of using MnO NPs as a strong antibacterial agent in different industrial and medical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用枯草芽孢杆菌 ATCC6633 进行抗菌氧化锰纳米粒子的生物合成与表征
由于潜在的抗菌应用,合成金属氧化物纳米粒子的绿色合成源是一个有趣且不断扩展的研究领域。一般来说,纳米粒子的制备采用不同的化学和物理方法,除了成本高、加工步骤复杂之外,还会产生有毒或有害的纳米级粒子。本研究利用枯草芽孢杆菌 ATCC6633 的无细胞上清液还原硫酸锰(MnSO 4 .H 2 O),成功地生物合成了纳米氧化锰颗粒(MnO NPs)。紫外可见光谱、傅立叶变换红外光谱(FT-IR)、Zeta 分析和透射电子显微镜(TEM)证实了 MnO NPs 的形成。生物合成的 MnO NPs 在 285 和 353 纳米波长处显示出两个吸收峰。傅立叶变换红外光谱证明,在生物合成 MnO NPs 的过程中存在细菌蛋白质,它们可能起到稳定剂的作用。根据 Zeta 分析,MnO NPs 带有 -20.4 mV 的负电荷。TEM 显微照片显示,MnO NPs 呈棒状,长度为 70 至 100 nm,直径为 10 至 23 nm。MnO NPs 对蜡样芽孢杆菌和大肠杆菌具有杀菌作用,抑菌区分别为 23 毫米和 25 毫米,最小抑菌浓度值分别为 20 微克/毫升和 15 微克/毫升。研究结果表明,氧化锰氮氧化物可作为一种强效抗菌剂用于不同的工业和医疗领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Association of IL-6 rs1800795 and IL-1 β rs16944 polymorphisms with non-small cell lung cancer in the Egyptian population: a pilot study Electrochemical sensing of antipyrine and its interaction with ds-DNA modified electrode. Morphological and Ultrastructural Changes of Escherichia coli and Klebsiella pneumoniae carriers of β-lactamase when subject to β-lactam Antibiotic Oral intake of Pomegranate Peels Stimulate Glutathione levels and Superoxide Dismutase Activity to Protect Against Cisplatin-Induced Nephrotoxicity A Novel Hybrid Approach to Masked Face Recognition using Robust PCA and GOA Optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1