Jaeik Kim , Seungwoo Lee , Hyungjun Lee , Joonhyeok Park , Jaeyeong Lee , Janghun Park , Jeongheon Kim , Jiseok Kwon , Jongsung Jin , Jiung Cho , Ungyu Paik , Taeseup Song
{"title":"A facile approach to form an artificial CEI layer induced by residual Li compounds on LiNi0.9Co0.05Mn0.05O2 and Li6PS5Cl for all-solid-state batteries","authors":"Jaeik Kim , Seungwoo Lee , Hyungjun Lee , Joonhyeok Park , Jaeyeong Lee , Janghun Park , Jeongheon Kim , Jiseok Kwon , Jongsung Jin , Jiung Cho , Ungyu Paik , Taeseup Song","doi":"10.1016/j.etran.2023.100306","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>All-solid-state batteries (ASSBs) are attracting significant attention as alternatives to conventional lithium-ion batteries due to their safety and higher energy density. However, </span>electrochemical reactions<span> between the solid electrolytes<span> and active materials result in the degradation of electrochemical cell performances. A conventional approach is to employ protective layers onto the active materials, but this approach could have the drawback of being costly and time-consuming. The artificial cathode electrolyte interphase (CEI) layer generated by reactions between components within the electrode could provide a solution to these challenges. However, this approach can cause component degradation due to its intrinsically degradative nature of the forming process. In this study, we demonstrate the ASSBs with enhanced electrochemical performances by introducing lithium oxy-thiophosphate species (P-O</span></span></span><sub>x</sub>-S<sub>y</sub>-···Li<sup>+</sup>, LPOS) and LiCl artificial CEI layer, which could be spontaneously formed during heat treatment by chemical reactions between the solid electrolytes and residual Li compounds on the LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub> (NCM) without the degradation. The LPOS-LiCl layer effectively suppresses the side reactions between solid electrolytes and NCM during the repeated electrochemical cyclings. As a result, the NCM full-cell (3.7 mAh cm<sup>−2</sup>) with the LPOS-LiCl artificial CEI layer exhibits 80.0 % cycle retention after 300 cycles at 0.2 C rate and room temperature. Moreover, it demonstrates 58 % higher Li-ion mobility and 36 % lower internal resistance after cycling compared to the NCM full-cell without the LPOS-LiCl artificial CEI layer.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"19 ","pages":"Article 100306"},"PeriodicalIF":15.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000814","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state batteries (ASSBs) are attracting significant attention as alternatives to conventional lithium-ion batteries due to their safety and higher energy density. However, electrochemical reactions between the solid electrolytes and active materials result in the degradation of electrochemical cell performances. A conventional approach is to employ protective layers onto the active materials, but this approach could have the drawback of being costly and time-consuming. The artificial cathode electrolyte interphase (CEI) layer generated by reactions between components within the electrode could provide a solution to these challenges. However, this approach can cause component degradation due to its intrinsically degradative nature of the forming process. In this study, we demonstrate the ASSBs with enhanced electrochemical performances by introducing lithium oxy-thiophosphate species (P-Ox-Sy-···Li+, LPOS) and LiCl artificial CEI layer, which could be spontaneously formed during heat treatment by chemical reactions between the solid electrolytes and residual Li compounds on the LiNi0.9Co0.05Mn0.05O2 (NCM) without the degradation. The LPOS-LiCl layer effectively suppresses the side reactions between solid electrolytes and NCM during the repeated electrochemical cyclings. As a result, the NCM full-cell (3.7 mAh cm−2) with the LPOS-LiCl artificial CEI layer exhibits 80.0 % cycle retention after 300 cycles at 0.2 C rate and room temperature. Moreover, it demonstrates 58 % higher Li-ion mobility and 36 % lower internal resistance after cycling compared to the NCM full-cell without the LPOS-LiCl artificial CEI layer.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.