R. Welton, B. Han, M. Stockli, S. Murray, T. Pennisi, C. Stinson, V. Andzulis, G. Terszakowec, C. Piller, O. Tarvainen, D. Willis
{"title":"Recent H- ion source research and development at the Oak Ridge National Laboratory","authors":"R. Welton, B. Han, M. Stockli, S. Murray, T. Pennisi, C. Stinson, V. Andzulis, G. Terszakowec, C. Piller, O. Tarvainen, D. Willis","doi":"10.1088/1748-0221/18/12/C12011","DOIUrl":null,"url":null,"abstract":"The U.S. Spallation Neutron Source (SNS) is a state-of-the-art neutron scattering facility delivering the world's most intense pulsed neutron beams to a wide array of instruments which are used to conduct investigations in many fields of science and engineering. Neutrons are produced from spallation of liquid Hg by bombardment of short (∼1 μs), intense (∼35 A) pulses of protons delivered at 60 Hz by a storage ring which is fed by a high-intensity, ∼1 GeV H- LINAC. This facility has operated almost continuously since 2006, with ion source performance increasing over those years, and currently providing 50–60 mA of H- ions with a duty-factor of 6% for maintenance-free runs of several months with near 100% availability. Ion source research and development at ORNL has played a key role in enabling and supporting this success: this report provides an update on some of the ongoing ion source research and development efforts which have been undertaken since the previous Negative Ion Beams and Sources (NIBS) conference in 2020. These include significant improvements to H- beam current by extraction from a larger source outlet aperture and improvements to the electron dumping system which should eliminate the gradual loss of electrode voltage over the course of a run which has occasionally impacted SNS operations. Improvement and simplification of the plasma ignition system for the external antenna ion source, a long-standing problem, was also realized. Lastly, RF coupling efficiency was measured for both the SNS internal and external antenna ion sources.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"68 13","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/12/C12011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The U.S. Spallation Neutron Source (SNS) is a state-of-the-art neutron scattering facility delivering the world's most intense pulsed neutron beams to a wide array of instruments which are used to conduct investigations in many fields of science and engineering. Neutrons are produced from spallation of liquid Hg by bombardment of short (∼1 μs), intense (∼35 A) pulses of protons delivered at 60 Hz by a storage ring which is fed by a high-intensity, ∼1 GeV H- LINAC. This facility has operated almost continuously since 2006, with ion source performance increasing over those years, and currently providing 50–60 mA of H- ions with a duty-factor of 6% for maintenance-free runs of several months with near 100% availability. Ion source research and development at ORNL has played a key role in enabling and supporting this success: this report provides an update on some of the ongoing ion source research and development efforts which have been undertaken since the previous Negative Ion Beams and Sources (NIBS) conference in 2020. These include significant improvements to H- beam current by extraction from a larger source outlet aperture and improvements to the electron dumping system which should eliminate the gradual loss of electrode voltage over the course of a run which has occasionally impacted SNS operations. Improvement and simplification of the plasma ignition system for the external antenna ion source, a long-standing problem, was also realized. Lastly, RF coupling efficiency was measured for both the SNS internal and external antenna ion sources.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.