Propagation of conformational instability in FK506-binding protein FKBP12

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-23 DOI:10.1016/j.bbapap.2023.140990
David M. LeMaster, Qamar Bashir, Griselda Hernández
{"title":"Propagation of conformational instability in FK506-binding protein FKBP12","authors":"David M. LeMaster,&nbsp;Qamar Bashir,&nbsp;Griselda Hernández","doi":"10.1016/j.bbapap.2023.140990","DOIUrl":null,"url":null,"abstract":"<div><p>FKBP12 is the archetype of the FK506 binding domains that define the family of FKBP proteins which participate in the regulation of various distinct physiological signaling processes. As the drugs FK506 and rapamycin inhibit many of these FKBP proteins, there is need to develop therapeutics which exhibit selectivity within this family. The long β<sub>4</sub>-β<sub>5</sub> loop of the FKBP domain is known to regulate transcriptional activity for the steroid hormone receptors and appears to participate in regulating calcium channel activity for the cardiac and skeletal muscle ryanodine receptors. The β<sub>4</sub>-β<sub>5</sub> loop of FKBP12 has been shown to undergo extensive conformational dynamics, and here we report hydrogen exchange measurements for a series of mutational variants in that loop which indicate deviations from a two-state kinetics for those dynamics. In addition to a previously characterized local transition near the tip of this loop, evidence is presented for a second site of conformational dynamics in the stem of this loop. These mutation-dependent hydrogen exchange effects extend beyond the β<sub>4</sub>-β<sub>5</sub> loop, primarily by disrupting the hydrogen bond between the Gly 58 amide and the Tyr 80 carbonyl oxygen which links the two halves of the structural rim that surrounds the active site cleft. Mutationally-induced opening of the cleft between Gly 58 and Tyr 80 not only modulates the global stability of the protein, it promotes a conformational transition in the distant β<sub>2</sub>-β<sub>3a</sub> hairpin that modulates the binding affinity for a FKBP51-selective inhibitor previously designed to exploit a localized conformational transition at the homologous site.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570963923001048/pdfft?md5=91c5189e8a05670fa77c5412b345dfc4&pid=1-s2.0-S1570963923001048-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923001048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

FKBP12 is the archetype of the FK506 binding domains that define the family of FKBP proteins which participate in the regulation of various distinct physiological signaling processes. As the drugs FK506 and rapamycin inhibit many of these FKBP proteins, there is need to develop therapeutics which exhibit selectivity within this family. The long β45 loop of the FKBP domain is known to regulate transcriptional activity for the steroid hormone receptors and appears to participate in regulating calcium channel activity for the cardiac and skeletal muscle ryanodine receptors. The β45 loop of FKBP12 has been shown to undergo extensive conformational dynamics, and here we report hydrogen exchange measurements for a series of mutational variants in that loop which indicate deviations from a two-state kinetics for those dynamics. In addition to a previously characterized local transition near the tip of this loop, evidence is presented for a second site of conformational dynamics in the stem of this loop. These mutation-dependent hydrogen exchange effects extend beyond the β45 loop, primarily by disrupting the hydrogen bond between the Gly 58 amide and the Tyr 80 carbonyl oxygen which links the two halves of the structural rim that surrounds the active site cleft. Mutationally-induced opening of the cleft between Gly 58 and Tyr 80 not only modulates the global stability of the protein, it promotes a conformational transition in the distant β23a hairpin that modulates the binding affinity for a FKBP51-selective inhibitor previously designed to exploit a localized conformational transition at the homologous site.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FK506 结合蛋白 FKBP12 构象不稳定性的传播
FKBP12 是 FK506 结合结构域的原型,它定义了 FKBP 蛋白家族,该家族参与调节各种不同的生理信号转导过程。由于药物 FK506 和雷帕霉素能抑制许多 FKBP 蛋白,因此有必要开发在该家族中具有选择性的疗法。众所周知,FKBP 结构域的β4-β5 长环可调节类固醇激素受体的转录活性,并似乎参与调节心脏和骨骼肌雷诺丁受体的钙通道活性。FKBP12 的 β4-β5 环已被证明发生了广泛的构象动态变化,我们在此报告了该环中一系列突变变体的氢交换测量结果,结果表明这些动态变化偏离了双态动力学。除了先前表征的该环尖端附近的局部转变外,我们还提出了该环茎中第二个构象动态位点的证据。这些依赖于突变的氢交换效应延伸到了β4-β5 环之外,主要是通过破坏 Gly 58 氨基酸和 Tyr 80 羰基氧之间的氢键来实现的。突变诱导的 Gly 58 和 Tyr 80 之间裂隙的打开不仅调节了蛋白质的整体稳定性,还促进了远处 β2-β3a 发夹的构象转变,从而调节了先前为利用同源位点的局部构象转变而设计的 FKBP51 选择性抑制剂的结合亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1