Razieh Fatehi, Farinaz Khosravian, Mansoor Salehi, Mohammad Kazemi
{"title":"Time-series bioinformatics analysis of SARS-CoV-infected cells to identify the biological processes associated with severe acute respiratory syndrome.","authors":"Razieh Fatehi, Farinaz Khosravian, Mansoor Salehi, Mohammad Kazemi","doi":"10.3233/HAB-230012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic, caused by the new virus of the coronavirus family, SARS-CoV-2, could lead to acute respiratory syndrome. The molecular mechanisms related to this disorder are still debatable.</p><p><strong>Methods: </strong>In this study to understand the pathogenicity mechanism of SARS-CoV-2, using the bioinformatics approaches, we investigated the expression of involved genes, their regulatory, and main signaling pathways during the time on days 1, 2, 3, and 4 of SARS-CoV infected cells.</p><p><strong>Results: </strong>Here, our investigation shows the complex changes in gene expression on days 2 and 3 post-infection. The functional analysis showed that especially related to immune response, response to other organisms, and defense response. IL6-AS1 is the predicted long non-coding RNA and is a key regulator during infection. In this study, for the first time has been reported the role of IL6-AS1. Also, the correlation of differential expression genes with the level of immune infiltration was shown in the relationship of Natural killer cells and T cell CD 4+ with DE genes.</p><p><strong>Conclusion: </strong>In the current study, identification of the altered expression pattern of genes in SARS-CoV-infected cells in time course also can help identify and link the molecular mechanisms and explore the holistic view of infection of SARS-CoV-2.</p>","PeriodicalId":53564,"journal":{"name":"Human Antibodies","volume":" ","pages":"81-88"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/HAB-230012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The COVID-19 pandemic, caused by the new virus of the coronavirus family, SARS-CoV-2, could lead to acute respiratory syndrome. The molecular mechanisms related to this disorder are still debatable.
Methods: In this study to understand the pathogenicity mechanism of SARS-CoV-2, using the bioinformatics approaches, we investigated the expression of involved genes, their regulatory, and main signaling pathways during the time on days 1, 2, 3, and 4 of SARS-CoV infected cells.
Results: Here, our investigation shows the complex changes in gene expression on days 2 and 3 post-infection. The functional analysis showed that especially related to immune response, response to other organisms, and defense response. IL6-AS1 is the predicted long non-coding RNA and is a key regulator during infection. In this study, for the first time has been reported the role of IL6-AS1. Also, the correlation of differential expression genes with the level of immune infiltration was shown in the relationship of Natural killer cells and T cell CD 4+ with DE genes.
Conclusion: In the current study, identification of the altered expression pattern of genes in SARS-CoV-infected cells in time course also can help identify and link the molecular mechanisms and explore the holistic view of infection of SARS-CoV-2.
期刊介绍:
Human Antibodies is an international journal designed to bring together all aspects of human hybridomas and antibody technology under a single, cohesive theme. This includes fundamental research, applied science and clinical applications. Emphasis in the published articles is on antisera, monoclonal antibodies, fusion partners, EBV transformation, transfections, in vitro immunization, defined antigens, tissue reactivity, scale-up production, chimeric antibodies, autoimmunity, natural antibodies/immune response, anti-idiotypes, and hybridomas secreting interesting growth factors. Immunoregulatory molecules, including T cell hybridomas, will also be featured.