Contrastive Transfer Learning for Prediction of Adverse Events in Hospitalized Patients

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Journal of Translational Engineering in Health and Medicine-Jtehm Pub Date : 2023-12-18 DOI:10.1109/JTEHM.2023.3344035
Hojjat Salehinejad;Anne M. Meehan;Pedro J. Caraballo;Bijan J. Borah
{"title":"Contrastive Transfer Learning for Prediction of Adverse Events in Hospitalized Patients","authors":"Hojjat Salehinejad;Anne M. Meehan;Pedro J. Caraballo;Bijan J. Borah","doi":"10.1109/JTEHM.2023.3344035","DOIUrl":null,"url":null,"abstract":"Objective: Deterioration index (DI) is a computer-generated score at a specific frequency that represents the overall condition of hospitalized patients using a variety of clinical, laboratory and physiologic data. In this paper, a contrastive transfer learning method is proposed and validated for early prediction of adverse events in hospitalized patients using DI scores. Methods and procedures: An unsupervised contrastive learning (CL) model with a classifier is proposed to predict adverse outcome using a single temporal variable (DI scores). The model is pretrained on an unsupervised fashion with large-scale time series data and fine-tuned with retrospective DI score data. Results: The performance of this model is compared with supervised deep learning models for time series classification. Results show that unsupervised contrastive transfer learning with a classifier outperforms supervised deep learning solutions. Pretraining of the proposed CL model with large-scale time series data and fine-tuning that with DI scores can enhance prediction accuracy. Conclusion: A relationship exists between longitudinal DI scores of a patient and the corresponding outcome. DI scores and contrastive transfer learning can be used to predict and prevent adverse outcomes in hospitalized patients. Clinical impact: This paper successfully developed an unsupervised contrastive transfer learning algorithm for prediction of adverse events in hospitalized patients. The proposed model can be deployed in hospitals as an early warning system for preemptive intervention in hospitalized patients, which can mitigate the likelihood of adverse outcomes.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"215-224"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10363391","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10363391/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Deterioration index (DI) is a computer-generated score at a specific frequency that represents the overall condition of hospitalized patients using a variety of clinical, laboratory and physiologic data. In this paper, a contrastive transfer learning method is proposed and validated for early prediction of adverse events in hospitalized patients using DI scores. Methods and procedures: An unsupervised contrastive learning (CL) model with a classifier is proposed to predict adverse outcome using a single temporal variable (DI scores). The model is pretrained on an unsupervised fashion with large-scale time series data and fine-tuned with retrospective DI score data. Results: The performance of this model is compared with supervised deep learning models for time series classification. Results show that unsupervised contrastive transfer learning with a classifier outperforms supervised deep learning solutions. Pretraining of the proposed CL model with large-scale time series data and fine-tuning that with DI scores can enhance prediction accuracy. Conclusion: A relationship exists between longitudinal DI scores of a patient and the corresponding outcome. DI scores and contrastive transfer learning can be used to predict and prevent adverse outcomes in hospitalized patients. Clinical impact: This paper successfully developed an unsupervised contrastive transfer learning algorithm for prediction of adverse events in hospitalized patients. The proposed model can be deployed in hospitals as an early warning system for preemptive intervention in hospitalized patients, which can mitigate the likelihood of adverse outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对比转移学习用于预测住院患者的不良事件
目的:恶化指数(DI恶化指数(DI)是一种计算机生成的特定频率的分数,它利用各种临床、实验室和生理数据来代表住院患者的整体状况。本文提出并验证了一种对比迁移学习方法,用于利用 DI 评分早期预测住院患者的不良事件。方法和程序:本文提出了一种带有分类器的无监督对比学习(CL)模型,利用单一时间变量(DI 评分)预测不良后果。该模型利用大规模时间序列数据进行无监督预训练,并利用回顾性 DI 评分数据进行微调。结果:该模型的性能与用于时间序列分类的有监督深度学习模型进行了比较。结果表明,带有分类器的无监督对比迁移学习优于有监督深度学习解决方案。利用大规模时间序列数据对所提出的 CL 模型进行预训练,并利用 DI 分数对其进行微调,可以提高预测准确性。结论患者的纵向 DI 分数与相应的结果之间存在关系。DI 评分和对比迁移学习可用于预测和预防住院患者的不良预后。临床影响:本文成功开发了一种用于预测住院患者不良事件的无监督对比迁移学习算法。所提出的模型可作为预警系统部署在医院中,对住院病人进行先期干预,从而降低不良后果发生的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
期刊最新文献
Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients Non-Contact Monitoring of Inhalation-Exhalation (I:E) Ratio in Non-Ventilated Subjects A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation Video-Based Respiratory Rate Estimation for Infants in the NICU A Novel Chest-Based PPG Measurement System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1