Hsiu-Lin Chen;Bor-Shing Lin;Chieh-Miao Chang;Hao-Wei Chung;Shu-Ting Yang;Bor-Shyh Lin
{"title":"Intelligent Neonatal Blood Perfusion Assessment System Based on Near-Infrared Spectroscopy","authors":"Hsiu-Lin Chen;Bor-Shing Lin;Chieh-Miao Chang;Hao-Wei Chung;Shu-Ting Yang;Bor-Shyh Lin","doi":"10.1109/JTEHM.2025.3532801","DOIUrl":null,"url":null,"abstract":"High-risk infants in the neonatal intensive care unit often encounter the problems with hemodynamic instability, and the poor blood circulation may cause shock or other sequelae. But the appearance of shock is not easy to be noticed in the initial stage, and most of the clinical judgments are subjectively dependent on the experienced physicians. Therefore, how to effectively evaluate the neonatal blood circulation state is important for the treatment in time. Although some instruments, such as laser Doppler flow meter, can estimate the information of blood flow, there is still lack of monitoring systems to evaluate the neonatal blood circulation directly. Based on the technique of near-infrared spectroscopy, an intelligent neonatal blood perfusion assessment system was proposed in this study, to monitor the changes of hemoglobin concentration and tissue oxygen saturation simultaneously and further estimate the neonatal blood perfusion. Several indexes were defined from the changes of hemoglobin parameters under applying and relaxing pressure to obtain the neonatal perfusion information. Moreover, the neural network-based classifier was also used to effectively classify the groups with different blood perfusion states. From the experimental results, the difference between the groups with different blood perfusion states could exactly be reflected on several defined indexes and could be effectively recognized by using the technique of neural network. Clinical and Translational Impact Statement—An intelligent neonatal blood perfusion assessment system was proposed to monitor the changes of hemoglobin concentration and tissue oxygen saturation simultaneously and further estimate the neonatal blood perfusion (Category: Preclinical Research)","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"23-32"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10849653","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10849653/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-risk infants in the neonatal intensive care unit often encounter the problems with hemodynamic instability, and the poor blood circulation may cause shock or other sequelae. But the appearance of shock is not easy to be noticed in the initial stage, and most of the clinical judgments are subjectively dependent on the experienced physicians. Therefore, how to effectively evaluate the neonatal blood circulation state is important for the treatment in time. Although some instruments, such as laser Doppler flow meter, can estimate the information of blood flow, there is still lack of monitoring systems to evaluate the neonatal blood circulation directly. Based on the technique of near-infrared spectroscopy, an intelligent neonatal blood perfusion assessment system was proposed in this study, to monitor the changes of hemoglobin concentration and tissue oxygen saturation simultaneously and further estimate the neonatal blood perfusion. Several indexes were defined from the changes of hemoglobin parameters under applying and relaxing pressure to obtain the neonatal perfusion information. Moreover, the neural network-based classifier was also used to effectively classify the groups with different blood perfusion states. From the experimental results, the difference between the groups with different blood perfusion states could exactly be reflected on several defined indexes and could be effectively recognized by using the technique of neural network. Clinical and Translational Impact Statement—An intelligent neonatal blood perfusion assessment system was proposed to monitor the changes of hemoglobin concentration and tissue oxygen saturation simultaneously and further estimate the neonatal blood perfusion (Category: Preclinical Research)
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.