{"title":"Atomic layer deposition niobium oxide and lithium niobium oxide as a protection technique for anode-free batteries","authors":"Kieran Doyle-Davis, Keegan Adair, Changhong Wang, Feipeng Zhao, Sixu Deng, Xueliang Sun","doi":"10.1002/bte2.20230051","DOIUrl":null,"url":null,"abstract":"<p>As demand for extended range in electric vehicles and longer battery lifetimes in consumer electronics has grown, so have the requirements for higher energy densities and longer cycle lifetimes of the cells that power them. One solution to this is the implementation of an “anode-free” battery. By removing the anode and plating lithium directly onto the current collector, it is possible to access the same capacities and voltage windows as traditional lithium metal batteries, with the entirety of the lithium source coming from the cathode. Herein, a copper foil current collector coated with niobium oxide or lithium niobium oxide through atomic layer deposition (ALD) is applied to extend the cycling life of the anode-free batteries by reducing dendrite formation and improving the stability of the lithium metal surface throughout cycling. The ALD coatings are able to extend the cycle lifetime in full coin cells from 20 cycles to 80% capacity retained in the bare copper controls to 50 and 115 cycles for the NbO and LiNbO coatings, respectively. Over the lifetime of the cells, the ALD-LiNbO is able to cumulatively offer a staggering improvement of an additional 100 kWh L<sup>−1</sup> compared to the bare copper control.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As demand for extended range in electric vehicles and longer battery lifetimes in consumer electronics has grown, so have the requirements for higher energy densities and longer cycle lifetimes of the cells that power them. One solution to this is the implementation of an “anode-free” battery. By removing the anode and plating lithium directly onto the current collector, it is possible to access the same capacities and voltage windows as traditional lithium metal batteries, with the entirety of the lithium source coming from the cathode. Herein, a copper foil current collector coated with niobium oxide or lithium niobium oxide through atomic layer deposition (ALD) is applied to extend the cycling life of the anode-free batteries by reducing dendrite formation and improving the stability of the lithium metal surface throughout cycling. The ALD coatings are able to extend the cycle lifetime in full coin cells from 20 cycles to 80% capacity retained in the bare copper controls to 50 and 115 cycles for the NbO and LiNbO coatings, respectively. Over the lifetime of the cells, the ALD-LiNbO is able to cumulatively offer a staggering improvement of an additional 100 kWh L−1 compared to the bare copper control.