Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining

Samrudh Devanahalli Bokkassam, Jegatha Nambi Krishnan
{"title":"Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining","authors":"Samrudh Devanahalli Bokkassam,&nbsp;Jegatha Nambi Krishnan","doi":"10.1002/bte2.20240022","DOIUrl":null,"url":null,"abstract":"<p>Lithium ion batteries (LIBs) have brought about a revolution in the electronics industry and are now almost a part of our everyday activities. They are on the verge of finding application in almost every electronic rechargeable device and have a bright future ahead. With the recent discovery of substantial reserves of lithium in India, along with the favourable government policies for the usage of electric vehicles (EVs), LIBs are expected to play a major role in meeting sustainable energy goals. Though LIBs have become a commercial success, they face many challenges, such as high cost of production, thermal runaway and overcharging, that might hamper their extensive use. Many research studies have been conducted regarding the operation of LIB, with safety being a concern. With rapid technology development, going nanoscale for LIB production has become achievable and valuable as it has been reported to increase the shelf life of the battery. In this review, recycling of spent LIBs is discussed, as the extraction of the leftover lithium and other minerals is possible through recycling process. The advantages and drawbacks of deep-sea lithium mining have been discussed, as it is explored as an alternative to major lithium sources due to the rapid depletion of land mining sources. Its impact on the environment and the mineral market has been assessed. This review paper attempts to give an overview of all the vital characteristics of an LIB, such as life cycle, fast charging and overcharging, while covering strategies for overcoming challenges faced in the functioning of LIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium ion batteries (LIBs) have brought about a revolution in the electronics industry and are now almost a part of our everyday activities. They are on the verge of finding application in almost every electronic rechargeable device and have a bright future ahead. With the recent discovery of substantial reserves of lithium in India, along with the favourable government policies for the usage of electric vehicles (EVs), LIBs are expected to play a major role in meeting sustainable energy goals. Though LIBs have become a commercial success, they face many challenges, such as high cost of production, thermal runaway and overcharging, that might hamper their extensive use. Many research studies have been conducted regarding the operation of LIB, with safety being a concern. With rapid technology development, going nanoscale for LIB production has become achievable and valuable as it has been reported to increase the shelf life of the battery. In this review, recycling of spent LIBs is discussed, as the extraction of the leftover lithium and other minerals is possible through recycling process. The advantages and drawbacks of deep-sea lithium mining have been discussed, as it is explored as an alternative to major lithium sources due to the rapid depletion of land mining sources. Its impact on the environment and the mineral market has been assessed. This review paper attempts to give an overview of all the vital characteristics of an LIB, such as life cycle, fast charging and overcharging, while covering strategies for overcoming challenges faced in the functioning of LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1