Warner Marzocchi, Laura Sandri, Salvatore Ferrara, Jacopo Selva
{"title":"From the detection of monitoring anomalies to the probabilistic forecast of the evolution of volcanic unrest: an entropy-based approach","authors":"Warner Marzocchi, Laura Sandri, Salvatore Ferrara, Jacopo Selva","doi":"10.1007/s00445-023-01692-7","DOIUrl":null,"url":null,"abstract":"<p>Owing to the current lack of plausible and exhaustive physical pre-eruptive models, often volcanologists rely on the observation of monitoring anomalies to track the evolution of volcanic unrest episodes. Taking advantage from the work made in the development of Bayesian Event Trees (BET), here we formalize an entropy-based model to translate the observation of anomalies into probability of a specific volcanic event of interest. The model is quite general and it could be used as a stand-alone eruption forecasting tool or to set up conditional probabilities for methodologies like the BET and of the Bayesian Belief Network (BBN). The proposed model has some important features worth noting: (i) it is rooted in a coherent logic, which gives a physical sense to the heuristic information of volcanologists in terms of entropy; (ii) it is fully transparent and can be established in advance of a crisis, making the results reproducible and revisable, providing a transparent audit trail that reduces the overall degree of subjectivity in communication with civil authorities; (iii) it can be embedded in a unified probabilistic framework, which provides an univocal taxonomy of different kinds of uncertainty affecting the forecast and handles these uncertainties in a formal way. Finally, for the sake of example, we apply the procedure to track the evolution of the 1982–1984 phase of unrest at Campi Flegrei.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"17 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-023-01692-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the current lack of plausible and exhaustive physical pre-eruptive models, often volcanologists rely on the observation of monitoring anomalies to track the evolution of volcanic unrest episodes. Taking advantage from the work made in the development of Bayesian Event Trees (BET), here we formalize an entropy-based model to translate the observation of anomalies into probability of a specific volcanic event of interest. The model is quite general and it could be used as a stand-alone eruption forecasting tool or to set up conditional probabilities for methodologies like the BET and of the Bayesian Belief Network (BBN). The proposed model has some important features worth noting: (i) it is rooted in a coherent logic, which gives a physical sense to the heuristic information of volcanologists in terms of entropy; (ii) it is fully transparent and can be established in advance of a crisis, making the results reproducible and revisable, providing a transparent audit trail that reduces the overall degree of subjectivity in communication with civil authorities; (iii) it can be embedded in a unified probabilistic framework, which provides an univocal taxonomy of different kinds of uncertainty affecting the forecast and handles these uncertainties in a formal way. Finally, for the sake of example, we apply the procedure to track the evolution of the 1982–1984 phase of unrest at Campi Flegrei.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.